Advertisement

Abstract

The cephalopods are marine predators that have survived by successfully competing with the teleost fish in all areas of the sea from shoreline to abyssal depths. The brain of cephalopods approaches that of the vertebrates in relative size, being as large as or larger than the brains of many fish although smaller than those of birds and mammals. The extensive development of sensory and neural systems that is seen in the recent cephalopods enables them to exhibit the most complex types of adaptive behavior that are found in the nonvertebrate world. Having evolved as a separate group for more than 500 million years to reach the position that they now occupy in the animal kingdom, cephalopods are of obvious interest to investigators employing a comparative approach. It is unfortunate that the practical difficulties involved in obtaining, transporting, and housing cephalopods in conditions suitable for behavioral research have precluded their wider use.

Keywords

Discrimination Learning Visual Discrimination Optic Lobe Retention Performance Tactile Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J. S., and Nixon, M., 1970, Use of beaks and radula by Octopus vulgaris in feeding, J. Zool. Proc. Zool. Soc. Lond., 161, 25–38.Google Scholar
  2. Arnold, J. M., and Arnold, K. O., 1969, Some aspects of hole-boring predation by Octopus vulgaris, Am. Zool., 9, 991–996.Google Scholar
  3. Barlow, J. J., and Sanders, G. D., 1974, Intertrial interval and passive avoidance learning in Octopus vulgaris, Anim. Learn. Behav., 2, 86–88.Google Scholar
  4. Beck, A., 1899, Uber die bei Belichtung der Netzhaut von Eledone moschata enstehende Actionstrome, Arch. Ges. Physiol., 78, 129–162.Google Scholar
  5. Bierens de Haan, J. A., 1949, “Animal Psychology,” Hutchinson, London, p. 119.Google Scholar
  6. Bitterman, M. E., 1968, Reversal learning and forgetting, Science Wash., D.C., 160, 100.Google Scholar
  7. Boletzky, S. V., and Boletzky, M. V., 1969, First results in rearing Octopus joubini Robson 1929, Verhandl. Naturj. Ges. Basel, 80, 56–61.Google Scholar
  8. Boycott, B. B., 1954, Learning in Octopus vulgaris and other cephalopods, Pubbl. Staz. Zool. Napoli, 25, 67–93.Google Scholar
  9. Boycott, B. B., 1960, The functioning of the statocyst of Octopus vulgaris, Proc. Soc. Lond. B. Biol. Sci., 152, 78–87.Google Scholar
  10. Boycott, B. B., 1961, The functional organisation of the brain of the cuttlefish Sepia officinalis, Proc. R. Soc. Lond. B. Biol. Sci., 153, 503–534.Google Scholar
  11. Boycott, B. B., Lettvin, J. Y., Maturana, H. R., and Wall, P. D., 1965, Octopus optic responses, Exp. Neurol., 12, 247–256.PubMedGoogle Scholar
  12. Boycott, B. B., and Young, J. Z., 1950, The comparative study of learning, Symp. Soc. Exp. Biol., 4, 432–453.Google Scholar
  13. Boycott, B. B., and Young, J. Z., 1955a, Memories controlling attacks on food objects by Octopus vulgaris Lamarck, Pubbl. Staz. Zool. Napoli, 27, 232–249.Google Scholar
  14. Boycott, B. B., and Young, J. Z., 1955b, A memory system in Octopus vulgaris Lamarck, Proc. R. Soc. Lond. B. Biol. Sci., 143, 449–480.PubMedGoogle Scholar
  15. Boycott, B. B., and Young, J. Z., 1956, Reactions to shape in Octopus vulgaris Lamarck, Proc. Zool. Soc. Lond., 126, 491–547.Google Scholar
  16. Boycott, B. B., and Young, J. Z., 1957, Effect of interference with the vertical lobe on visual discriminations in Octopus vulgaris Lamarck, Proc. R. Soc. Lond. B. Sci., 146, 439–459.Google Scholar
  17. Boycott, B. B., and Young, J. Z., 1958, Reversal of learned responses in Octopus vulgaris Lamarck, Anim. Behav., 6, 45–52.Google Scholar
  18. Bradley, E. A., 1974, Some observations of Octopus joubini Robson reared in an inlaid aquarium, J. Zool. Proc. Zool Soc. Lond., 173, 355–368.Google Scholar
  19. Budelmann, B.-U., and Wolff, H. G., 1973, Gravity response from angular acceleration receptors in Octopus vulgaris, J. Comp. Physiol, 85, 283–290.Google Scholar
  20. Budelmann, B.-U., Barber, V. C., and West, S., 1973, Scanning electron microscopial studies of the arrangements and numbers of hair cells in the statocysts of Octopus vulgaris, Sepia officinalis and Loligo vulgaris, Brain Res, 56, 25–41.Google Scholar
  21. Buytendijk, F. J. J., 1933, Das Verhalten von Octopus nach teilweiser Zerstörung des “Gehirns, ”Arch. Neerl. Physiol., 18, 24.Google Scholar
  22. Clymer, J. C., 1973, A computer simulation model of attack learning behaviour in the octopus, Technical Report no. 141, Computer and Communication Sciences Department, University of Michigan.Google Scholar
  23. Cousteau, J. Y., and Diole, P., 1973, “Octopus and Squid: Soft Intelligence,” Cassel and Co. Ltd., London.Google Scholar
  24. Crancher, P., King, M. G., Bennett, A., and Montgomery, R. B., 1972, Conditioning of a free operant in Octopus cyaneus Gray, J. Exp. Anal. Behav., 17, 359–362.PubMedGoogle Scholar
  25. Denton, E. J., 1974, On the buoyancy and the lives of modern and fossil cephalopods, Proc. R. Soc. Lond. B. Biol. Sci., 185, 273–299.Google Scholar
  26. Denton, E. J., and Gilpin-Brown, J. B., 1973, Floatation mechanisms in modern and fossil cephalopods, in “Advances in Marine Biology” (F. S. Russell and M. Yonge, eds.), Vol. 11, pp 197–268, Academic Press, New York.Google Scholar
  27. Deutsch, J. A., 1955, A theory of shape recognition, Br. J. Psychol, 46, 30–37.PubMedGoogle Scholar
  28. Deutsch, J. A., 1960a, The plexiform zone and shape recognition in Octopus, Nature (Lond.), 185, 443–446.Google Scholar
  29. Deutsch, J. A., 1960b, Theories of shape discrimination in Octopus, Nature (Lond.) 188, 1090–1092.Google Scholar
  30. Dews, P. M., 1959, Some observations on an operant in the octopus, J. Exp. Anal Behav., 2, 57–63.PubMedGoogle Scholar
  31. Dijkgraaf, S., 1963, Versuche, über Schallwahrnehmung bei Tintenfischen, Naturwissenschaften, 50, 50.Google Scholar
  32. Dilly, P. N., 1963, Delayed responses in Octopus, J. Exp. Biol, 40, 393–401.Google Scholar
  33. Dodwell, P. C., 1961, Facts and theories of shape discrimination, Nature (Lond.), 191, 578–580.Google Scholar
  34. Eninger, M. U., 1952, Habit summation in a selective learning problem, J. Comp. Physiol. Psychol., 45, 604–608.PubMedGoogle Scholar
  35. Goldsmith, M., 1917a, Quelques réactions sensorielles chez le Poulpe, C. R. Acad. Sci. Paris, 164, 448.Google Scholar
  36. Goldsmith, M., 1917b, Acquisition d’une habitude chez le Poulpe, C. R. Acad. Sci. Paris, 164, 737.Google Scholar
  37. Goldsmith, M., 1917c, Quelques réactions du Poulpe; contribution à la psychologie des invertebres, Bull. Inst. Gén. Psychol, 17, 25–44.Google Scholar
  38. Gonzales, R. C., Behrend, E. R., and Bitterman, M. E., 1967, Reversal learning and forgetting in bird and fish, Science, 158, 519–521.Google Scholar
  39. Graziadei, P., 1964, Electron microscopy of some primary receptors in the sucker of Octopus vulgaris, Z. Zellforsch. Mikrosk. Anat. Abt. Histochem., 64, 510–522.Google Scholar
  40. Graziadei, P., 1965, Sensory receptor cells and related neurons in cephalopods, Cold Spring Harbor Symp. Quant. Biol, 30, 45–57.PubMedGoogle Scholar
  41. Graziadei, P., 1971, The nervous system of the arms, Ch. 3.in “The Anatomy of the Nervous System of Octopus vulgaris” (Young, J. Z.), Clarendon Press, Oxford.Google Scholar
  42. Grice, G. R., 1948, The relation of secondary reinforcement to delayed reward in visual discrimination learning, J. Exp. Psychol, 38, 1–16.PubMedGoogle Scholar
  43. Hubbard, S. J., 1960, Hearing and the octopus statocyst, Exp. Biol, 37 845–853.Google Scholar
  44. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol (Lond.), 160, 106–154.Google Scholar
  45. Itami, K., Izawa, Y., Maeda, S., and Nakai, K., 1963, Notes on the laboratory culture of the octopus larvae, Bull. Jap. Soc. Sci. Fish., 29, 514–520.Google Scholar
  46. Kovačević, N., and Rakić, L. J., 1971, Circadian rhythm and visual discrimination in Octopus vulgaris Lamarck, Arh. Biol. Nauka, 23, 3–4.Google Scholar
  47. Kühn, A., 1930, Über Farbensinn and Anpassung der Körpefarbe an die Umgebung bei Tintenfischen, Nachr. Ges. Wiss. Gottingen, Mathnat. Kl., 10.Google Scholar
  48. Kühn, A., 1950, Über Farbwechsel und Farbensinn von Cephalopoden. Z. Vgl. Physiol., 32, 572.Google Scholar
  49. Lane, F. W., 1957, “Kingdom of the Octopus,” Jarrolds Publishers Ltd., London.Google Scholar
  50. Lawrence, D. H., 1952, The transfer of a discrimination along a continuum, J. Comp. Physiol. Psychol., 45, 511–516.PubMedGoogle Scholar
  51. Mackintosh, J., 1962, An investigation of reversal learning in Octopus vulgaris Lamarck, Q. J. Exp. Psychol., 14, 15–22.Google Scholar
  52. Machintosh, N. J., 1965a, Discrimination learning in the octopus, Anim. Behav. (Suppl. No. 1), 129–134.Google Scholar
  53. Mackintosh, N. J., 1965b, Selective attention in animal discrimination learning, Psychol. Bull., 64, 124–150.PubMedGoogle Scholar
  54. Mackintosh, N. J., and Mackintosh, J., 1963, Reversal learning in Octopus vulgaris Lamarck with and without irrelevant cues, Q. J. Exp. Psychol., 15, 236–242.Google Scholar
  55. Mackintosh, N. J., and Mackintosh, J., 1964a, Performance of Octopus over a series of reversals of a simultaneous discrimination, Anim. Behav., 12, 321–324.Google Scholar
  56. Mackintosh, N. J., and Mackintosh, J., 1964b, The effect of overtraining on a non-reversal shift in Octopus, J. Genet. Psychol., 106, 373–377.Google Scholar
  57. Mac Nichol, E. F., and Love, W. E., 1960, Electrical response of the retinal nerve and optic ganglion of the squid, Science, 132, 737–738.Google Scholar
  58. MacNichol, E. F., Jr., and Love, W. E., 1961, Impulse discharges from the retinal nerve and optic ganglion of the squid, in “Symposium of the Visual System” R. Jung and H. Kornhuber, eds., pp. 97–103, Springer-Verlag, Berlin.Google Scholar
  59. Maldonado, H., 1963a, The positive learning process in Octopus vulgaris, Z. Vgl. Physiol., 47, 191–214.Google Scholar
  60. Maldonado, H., 1963b, The general amplification function of the vertical lobe in Octopus vulgaris, Z. Vgl. Physiol., 47, 215–229.Google Scholar
  61. Maldonado, H., 1963c, The visual attack learning system in Octopus vulgaris, J. Theor. Biol., 5, 470–488.PubMedGoogle Scholar
  62. Maldonado, H., 1964, The control of attack by Octopus, Z. Vgl. Physiol., 47, 656–674.Google Scholar
  63. Maldonado, H., 1965, The positive and negative learning process in Octopus vulgaris Lamarck: Influence of the vertical and median superior frontal lobes, Z. Vgl. Physiol., 51, 185–203.Google Scholar
  64. Maldonado, H., 1968, Effect of electroconvulsive shock on memory in Octopus vulgaris Lamarck, Z. Vgl. Physiol., 59, 25–37.Google Scholar
  65. Maldonado, H., 1969, Further investigations on the effect of electroconvulsive shock (ECS) on memory in Octopus vulgaris, Z. Vgl. Physiol., 63, 113–118.Google Scholar
  66. Mangold, K., and von Boletzky, S., 1973, New data on reproductive biology and growth of Octopus vulgaris. Marine Biol. N.Y., 19, 7–17.Google Scholar
  67. Mangold-Wirz, K., 1969, The swimming of pelagic squids, Documenta Geigy Nautilus, 7, 6–7.Google Scholar
  68. Maturana, H. R., and Sperling, S., 1963, Unidirectional response to angular acceleration recorded from the middle cristal nerve in the statocyst of Octopus vulgaris, Nature (Lond.), 197, 815–816.Google Scholar
  69. Mello, N. K., 1965a, Interhemispheric reversal of mirror-image oblique lines after monocular training in pigeons, Science, 148, 252–254.PubMedGoogle Scholar
  70. Mello, N. K., 1965b, Mirror-image reversal in pigeons, Science Wash., D.C., 149, 1519–1520.Google Scholar
  71. Messenger, J. B., 1968, The visual attack of the cuttlefish, Sepia officinalis, Anim. Behav., 16, 342–357.Google Scholar
  72. Messenger, J. B., 1971, Two-stage recovery of a response in Sepia, Nature (Lond.), 232, 202–203.Google Scholar
  73. Messenger, J. B., 1973a, Learning in the cuttlefish, Sepia, Anim. Behav., 21, 801–826.Google Scholar
  74. Messenger, J. B., 1973b, Learning performance and brain structure: A study in development, Brain Res. 58, 519–523.PubMedGoogle Scholar
  75. Messenger, J. B., 1974, Reflecting elements in the skin of cephalopods and their importance for camouflage, J. Zool. (Lond.), 174, 387–395.Google Scholar
  76. Messenger, J. B., and Sanders, G. D., 1971, The inability of Octopus vulgaris to discriminate monocularly between oblique rectangles, Int. J. Neurosci., 1, 171–173.PubMedGoogle Scholar
  77. Messenger, J. B., and Sanders, G. D., 1972, Visual preference and two cue discrimination learning in octopus, Anim. Behav., 20, 580–585.PubMedGoogle Scholar
  78. Messenger, J. B., Wilson, A. P., and Hedge, A., 1973, Some evidence for colour blindness in Octopus, J. Exp. Biol., 59, 77–94.Google Scholar
  79. Mikhailoff, S., 1920, Experiences reflexologiques; experience nouvelles sur Eledone moschata, Bull. Inst. Oceanogr. Monaco, 379, 1–11.Google Scholar
  80. Moody, M. F., 1962, Evidence for the intraocular discrimination of vertically and horizontally polarised light by Octopus, J. Exp. Biol., 39, 21–30.Google Scholar
  81. Moody, M. F., and Parriss, J. R., 1961, The discrimination of polarized light by Octopus, a behavioural and morphological study, Z. Vgl. Physiol., 44, 268–291.Google Scholar
  82. Muntz, W. R. A., 1961a, Interocular transfer in Octopus vulgaris, J. Comp. Physiol. Psychol, 54, 49–55.PubMedGoogle Scholar
  83. Muntz, W. R. A., 1961b, The function of the vertical lobe system of Octopus in interocular transfer, J. Comp. Physiol Psychol, 54, 186–191.PubMedGoogle Scholar
  84. Muntz, W. R. A., 1961c, Interocular transfer in Octopus: Bilaterality of the engram, J. Comp. Physiol Psychol, 54, 192–195.PubMedGoogle Scholar
  85. Muntz, W. R. A., 1962, Stimulus generalization following monocular training in Octopus, J. Comp. Physiol Psychol, 55, 535–540.Google Scholar
  86. Muntz, W. R. A., 1963, Intraretinal transfer and the function of the optic lobes in Octopus, Q. J. Exp. Psychol, 15, 116–124.Google Scholar
  87. Muntz, W. R. A., 1970, An experiment on shape discrimination and signal detection in octopus, Q. J. Exp. Psychol, 22, 82–90.Google Scholar
  88. Muntz, W. R. A., Sutherland, N.S., and Young, J. Z., 1962, Simultaneous shape discrimination in Octopus after removal of the vertical lobe, J. Exp. Biol, 39, 557–566.PubMedGoogle Scholar
  89. Nixon, M., 1969, The lifespan of Octopus vulgaris Lamarck, Proc. Malacol. Soc. Lond., 38, 529–540.Google Scholar
  90. Nixon, M., and Young, J. Z., 1966, Levels of responsiveness to food or its absence and the vertical lobe circuit of Octopus vulgaris Lamarck, Z. Vgl. Physiol, 53, 165–184.Google Scholar
  91. Noble, J., 1966, Mirror-images and the forebrain commissures of the monkey, Nature (Lond.), 211, 1263–1265.Google Scholar
  92. Ohshima, Y., and Sang Choe, 1961, On the rearing of young cuttlefish and squid, Bull Jap. Soc. Sci. Fish., 27, 979–986.Google Scholar
  93. Ohshima, Y., and Sang Choe, 1963, Rearing of cuttlefish and squids, Nature (Lond.), 197, 307.Google Scholar
  94. Packard, A., 1961, Sucker display of Octopus, Nature (Lond.), 190, 736–737.Google Scholar
  95. Packard, A., 1969, Visual acuity and eye growth in Octopus vulgaris (Lamarck), Monit. Zool Ital., 3, 19–32.Google Scholar
  96. Packard, A., 1972, Cephalopods and fish: The limits of convergence, Biol Rev. (Camb.), 47, 241–307.Google Scholar
  97. Packard, A., and Albergoni, V., 1970, Relative growth, nucleic acid content and cell numbers of the brain in Octopus vulgaris (Lamarck), J. Exp. Biol., 52, 539–553.PubMedGoogle Scholar
  98. Packard, A., and Sanders, G. D., 1969, What the octopus shows to the world, Endeavour Engl. Ed., 28, 92–99.Google Scholar
  99. Packard, A., and Sanders, G. D., 1971, Body patterns of Octopus vulgaris and maturation of the response to disturbance, Anim. Behav., 19, 780–790.Google Scholar
  100. Parriss, J. R., 1963, Interference in learning and lesions in the visual system of Octopus vulgaris, Behaviour, 21, 233–245.Google Scholar
  101. Pieron, H., 1911, Contribution à la physchologie du poulpe; l’acquisition d’habitudes, Bull. Inst. Gen. Psychol., 17, 111–119.Google Scholar
  102. Pieron, H., 1914, Contribution à la Psychologie du poulpe; la memoire sensorielle, L’Annee Psychol., 20, 182.Google Scholar
  103. Pilson, M. E. Q., and Taylor, P. B., 1961, Hole drilling by Octopus, Science, 134, 1366–1368.Google Scholar
  104. Polimanti, C., 1910, Les cephalopodes ont-ils une memoire? Arch. Psychol., 10, 84–87.Google Scholar
  105. Prescott, J. H., and Brosseau, C., 1962, Transportation and display of the giant pacific octopus, Octopus appollyon, in International Zoology Year Book, 6, Jarvis and Morris, eds., 53–57.Google Scholar
  106. Rhodes, J. M., 1963, Simultaneous discrimination in Octopus, Pubbl. Staz. Zool. Napoli, 33, 83–91.Google Scholar
  107. Rowell, C. H. F., 1966, Activity of interneurones in the arm of Octopus in response to tactile stimulation, J. Exp. Biol., 44, 589–605.PubMedGoogle Scholar
  108. Rowell, C. H. F., and Wells, M. J., 1961, Retinal orientation and the discrimination of polarised light by octopuses, J. Exp. Biol, 38, 827–831.Google Scholar
  109. Sanders, G. D., 1970a, The retention of visual and tactile discriminations by Octopus vulgaris, Ph.D. thesis, University of London.Google Scholar
  110. Sanders, G. D., 1970b, Long-term memory of a tactile discrimination in Octopus vulgaris and the effect of vertical lobe removal, Brain Res., 20, 59–73.PubMedGoogle Scholar
  111. Sanders, G. D., 1970c, Long-term tactile memory in Octopus: Further experiments on the effect of vertical lobe removal, Brain Res., 24, 169–178.PubMedGoogle Scholar
  112. Sanders, G. D., and Barlow, J. J., 1971, Variations in retention performance during long-term memory formation, Nature (Lond.), 232, 203–204.Google Scholar
  113. Sanders, F. K., and Young, J. Z., 1940, Learning and other functions of the higher nervous centre of Sepia, J. Neurophysiol, 3, 501–526.Google Scholar
  114. Schiller, P. H., 1948, Studies on learning in the octopus, Report of Committee on Research for the National Academy of Sciences, 158–160.Google Scholar
  115. Schiller, P. H., 1949, Delayed detour response in the octopus, J. Comp. Physiol Psychol, 42, 220–225.PubMedGoogle Scholar
  116. Stephen, R. O., 1974, Electrophysiological studies of the brain of Octopus vulgaris, J. Physiol. 240, 19P-20P.Google Scholar
  117. Sutherland, N. S., 1957a, Visual discrimination of orientation by octopus, Brit. J. Psychol., 48, 55–71.PubMedGoogle Scholar
  118. Sutherland, N. S., 1957b, Visual discrimination of orientation and shape by the octopus, Nature Lond., 179, 11–13.Google Scholar
  119. Sutherland, N. S., 1958a, Visual discrimination of shape by octopus. Squares and triangles, Q. J. Exp. Psychol., 10, 40–47.Google Scholar
  120. Sutherland, N. S., 1958b, Visual discrimination of the orientation of rectangles by Octopus vulgaris Lamarck, J. Comp. Physiol. Psychol, 51, 452–458.PubMedGoogle Scholar
  121. Sutherland, N. S., 1959a, Visual discrimination of shape by octopus. Circles and squares, and circles and triangles, Q. J. Exp. Psychol, 11, 24–32.Google Scholar
  122. Sutherland, N. S., 1959b, A test of a theory of shape discrimination in Octopus vulgaris Lamarck, J. Comp. Physiol. Psychol., 52, 135–141.PubMedGoogle Scholar
  123. Sutherland, N. S., 1959c, Stimulus analysing mechanisms, in “Proceeding of a symposium on the mechanisation of Thought Processes,” Vol. 2, H.M. Stationery Office, London.Google Scholar
  124. Sutherland, N. S., 1960a, Visual discrimination of orientation by octopus: Mirror images, Brit. J. Psychol., 51, 9–18.PubMedGoogle Scholar
  125. Sutherland, N. S., 1960b, The visual discrimination of shape by octopus: Squares and rectangles, J. Comp. Physiol. Psychol., 53, 95–103.PubMedGoogle Scholar
  126. Sutherland, N. S., 1960c, Visual discrimination of shape by octopus: Open and closed forms, J. Comp. Physiol. Psychol., 53, 104–112.PubMedGoogle Scholar
  127. Sutherland, N. S., 1960d, The visual system of Octopus (3) Theories of shape discrimination in Octopus, Nature Lond., 186, 840–844.PubMedGoogle Scholar
  128. Sutherland, N. S., 1960e, Theories of shape discrimination in Octopus, Nature (Lond.), 188, 1092–1094.Google Scholar
  129. Sutherland, N. S., 1961, Discrimination of horizontal and vertical extents by Octopus, J. Comp. Physiol. Psychol, 54, 43–48.Google Scholar
  130. Sutherland, N. S., 1963a, Visual acuity and discrimination of stripe widths in Octopus vulgaris Lamarck, Pubbl Staz. Zool Napoli, 33, 92–109.Google Scholar
  131. Sutherland, N. S., 1963b, Shape discrimination and receptive fields, Nature (Lond.), 197, 118–122.Google Scholar
  132. Sutherland, N. S., 1968, Outlines of a theory of visual pattern recognition in animals and men, Proc. R. Soc. Lond. B Biol. Sci., 171, 297–317.PubMedGoogle Scholar
  133. Sutherland, N. S., 1969, Shape discrimination in rat, octopus and goldfish: A comparative study, J. Comp. Physiol Psychol, 67, 160–176.PubMedGoogle Scholar
  134. Sutherland, N. S., and Holgate, V., 1966, Two-cue discrimination learning in rats. J. Comp. Physiol Psychol, 61, 198–207.PubMedGoogle Scholar
  135. Sutherland, N. S., and Mackintosh, N. J., 1971, “Mechanisms of Animal Discrimination Learning,” Academic Press, New York and London.Google Scholar
  136. Sutherland, N. S., Mackintosh, N. J., and Mackintosh, J., 1963a, Simultaneous discrimination training of Octopus and transfer of discrimination along a continuum, J. Comp. Physiol Psychol, 56, 150–156.Google Scholar
  137. Sutherland, N. S., Mackintosh, J., and Mackintosh, N. J., 1963b, The visual discrimination of reduplicate patterns by octopus, Anim. Behav., 11, 106–110.Google Scholar
  138. Sutherland, N. S., Mackintosh, N. J., and Mackintosh, J., 1965, Shape and size discrimination in Octopus: The effects of pretraining along different dimensions, J. Gen. Psychol, 106, 1–10.Google Scholar
  139. Sutherland, N. S., and Müntz, W. R. A., 1959, Simultaneous discrimination training and preferred directions of motion in visual discrimination of shape in Octopus vulgaris Lamarck, Pubbl Staz. Zool. Napoli, 31, 109–126.Google Scholar
  140. Ten Cate, J., and Ten Cate-Kazeewa, B., 1938, Les Octopus vulgaris peuvent-ils discerner les formes? Arch. Neerl. Physiol, 23, 541–551.Google Scholar
  141. Thomas, R. F., & Opresko, L., 1973, Observations on Octopus joubini: Four laboratory reared generations, The Nautilus, 87, 61–65.Google Scholar
  142. von Uexkull, J., 1905, “Leitfaden in das Studium der exp. Biologie der Wassertiere,” p. 151, Wiesbaden. (Quoted by Polimanti, C., 1910.)Google Scholar
  143. Walker, J. J., Longo, N., & Bitterman, M. E., 1970, The octopus in the laboratory. Handling, maintenance and training, Behav. Res. Methods Instrum., 2, 15–18.Google Scholar
  144. Wells, M. J., 1959a, A touch learning centre in Octopus, J. Exp. Biol, 36, 590–612.Google Scholar
  145. Wells, M. J., 1959b, Functional evidence for neurone fields representing the individual arms within the central nervous system of Octopus, J. Exp. Biol, 36, 501–511.Google Scholar
  146. Wells, M. J., 1960, Proprioception and visual discrimination of orientation in Octopus, J. Exp. Biol., 37, 489–499.Google Scholar
  147. Wells, M. J., 1961a, Weight discrimination by Octopus, J. Exp. Biol, 38, 127–133.Google Scholar
  148. Wells, M. J., 1961b, Centres for tactile and visual learning in the brain of Octopus, J. Exp. Biol, 38, 811–826.Google Scholar
  149. Wells, M. J., 1962a, “Brain and Behaviour in Cephalopods,” Heinemann, London.Google Scholar
  150. Wells, M. J., 1962b, Early learning in Sepia, Symp. Zool. Soc. London, 8, 146–169.Google Scholar
  151. Wells, M. J., 1963, Taste by touch; some experiments with Octopus, J. Exp. Biol, 40, 187–193.Google Scholar
  152. Wells, M. J., 1964a, Tactile discrimination of shape by Octopus, J. Exp. Psychol, 16, 156–162.Google Scholar
  153. Wells, M. J., 1964b, Tactile discrimination of surface curvature and shape by the octopus, J. Exp. Biol, 41, 433–445.Google Scholar
  154. Wells, M. J., 1964c, Detour experiments with octopus, J. Exp. Biol, 41, 621–642.Google Scholar
  155. Wells, M. J., 1965a, Learning in the octopus, Symp. Soc. Exp. Biol, 20, 477–507.Google Scholar
  156. Wells, M. J., 1965b, Learning and movement in octopuses, Anim. Behav. (Suppl. No.l.), 115–128.Google Scholar
  157. Wells, M. J., 1965c, Learning by marine invertebrates, Adv. Mar. Biol, 3, 1–62.Google Scholar
  158. Wells, M. J., 1965d, The vertical lobe and touch learning in the octopus, J. Exp. Biol, 42, 233–255.PubMedGoogle Scholar
  159. Wells, M. J., 1966, “The brain and Behaviour of Cephalopods. Physiology of Mollusca,” K. M. Wilbur and C. M. Younge (eds.), Vol. 2, Ch.15, pp. 547–590, Academic Press, New York and London.Google Scholar
  160. Wells, M. J., 1967, Short-term learning and interocular transfer in detour experiments with octopuses, J. Exp. Biol, 47, 383–408.Google Scholar
  161. Wells, M. J., 1970, Detour experiments with split-brain octopuses, J. Exp. Biol, 53, 375–389.Google Scholar
  162. Wells, M. J., and Wells, J., 1956, Tactile discrimination and the behavior of blind Octopus, Pubbl. Staz. Zool Napoli, 28, 94–126.Google Scholar
  163. Wells, M. J., and Wells, J., 1957a, Repeated presentation experiments and the function of the vertical lobe in Octopus, J. Exp. Biol, 34, 469–477.Google Scholar
  164. Wells, M. J., and Wells, J., 1957b, The function of the brain of Octopus in tactile discrimination, J. Exp. Biol, 34, 131–142.Google Scholar
  165. Wells, M. J., and Wells, J., 1957c, The effect of lesions to the vertical and optic lobes on tactile discrimination in Octopus, J. Exp. Biol 34, 378–393.Google Scholar
  166. Wells, M. J., and Wells, J., 1958a, The effect of vertical lobe removal on the performance of octopuses in retention tests, J. Exp. Biol, 35, 337–348.Google Scholar
  167. Wells, M. J., and Wells, J., 1958b, The influence of preoperational training on the performance of octopuses following vertical lobe removal, J. Exp. Biol, 35, 324–336.Google Scholar
  168. Wells, M. J., and Young, J. Z., 1965, Split-brain preparations and touch learning in the Octopus, J. Exp. Biol, 43, 565–579.Google Scholar
  169. Wells, M. J., and Young, J. Z., 1966, Lateral interaction and transfer in the tactile memory of the Octopus, J. Exp. Biol, 45, 383–400.Google Scholar
  170. Wells, M. J., and Young, J. Z., 1968a, Changes in textural preferences in Octopus after lesions, J.Exp. Biol, 49, 401–412.Google Scholar
  171. Wells, M. J., and Young, J. Z., 1968b, Learning with delayed rewards in Octopus, Z. Vgl Physiol, 61, 103–128.Google Scholar
  172. Wells, M. J., and Young, J. Z., 1969a, Learning at different rates of training in the octopus, Anim. Behav., 17, 406–415.Google Scholar
  173. Wells, M. J., and Young, J. Z., 1969b, The effect of splitting part of the brain or removal of the median inferior frontal lobe on touch learning in Octopus, J. Exp. Biol, 50, 515–526.PubMedGoogle Scholar
  174. Wells, M. J., and Young, J. Z., 1970a, Stimulus generalisation in the tactile system of Octopus, J. Neurobiol., 2, 31–46.PubMedGoogle Scholar
  175. Wells, M. J., and Young, J. Z., 1970b, Single session learning by octopuses, J. Exp. Biol., 53, 779–788.PubMedGoogle Scholar
  176. Wells, M. J., and Young, J. Z., 1972, The median inferior frontal lobe and touch learning in the Octopus, J. Exp. Biol., 56, 381–402.PubMedGoogle Scholar
  177. Wirz, K., 1954, Etudes quantitatives sur le systeme nerveux des Cephalopodes. C. R. Acad. Sci. Paris, 238, 1353–1355.PubMedGoogle Scholar
  178. Wolterding, M. R., 1971, The rearing and maintenance of Octopus briareus in the laboratory, with aspects of their behavior and biology, M.S. thesis, University of Miami, Florida.Google Scholar
  179. Young, J. Z., 1956, Visual responses byOctopus to crabs and other figures before and after training, J. Exp. Biol, 33, 709–729.Google Scholar
  180. Young, J. Z., 1958a, Response of untrained octopuses to various figures and the effects of vertical lobe removal, Proc. R. Soc. Lond. B. Biol. Sci., 149, 463–483.PubMedGoogle Scholar
  181. Young, J. Z., 1958b, Effect of removal of various amounts of the vertical lobes on visual discrimination by Octopus, Proc. R. Soc. Lond. B. Biol. Sci., 149, 441–462.PubMedGoogle Scholar
  182. Young, J. Z., 1959, Extinction of unrewarded responses in Octopus, Pubbl. Staz. Zool. Napoli, 57, 225–247.Google Scholar
  183. Young, J. Z., 1960a, The statocysts of Octopus vulgaris, Proc. R. Soc. Lond. B. Biol. Sci., 152, 3–29.PubMedGoogle Scholar
  184. Young, J. Z., 1960b, Unit processes in the formation of representations in the memory of Octopus, Proc. R. Soc. Lond. B. Biol. Sci., 153, 1–17.Google Scholar
  185. Young, J. Z., 1960c, The visual system of Octopuses. (1) Regularities in the retina and optic lobes of Octopus in relation to form discrimination, Nature (Lond.), 186, 836–839.Google Scholar
  186. Young, J. Z., 1960d, Failures of discrimination learning following the removal of the vertical lobes in Octopus, Proc. R. Soc. Lond. B. Biol. Sci., 153, 18–46.Google Scholar
  187. Young, J. Z., 1961a, Learning and discrimination in the octopus, Biol. Rev. (Camb.), 36, 32–96. 32–96.Google Scholar
  188. Young, J. Z., 1961b, Rates of establishment of representations in the memory of octopuses with and without vertical lobes, J. Exp. Biol., 38, 43–60.Google Scholar
  189. Young, J. Z., 1962a, The optic lobes of Octopus vulgaris, Philos. Trans. B., 245, 19–58.Google Scholar
  190. Young, J. Z., 1962b, Reversal of learning in Octopus and the effect of removal of the vertical lobe, Q. J. Exp. Phychol., 14, 193–205.Google Scholar
  191. Young, J. Z., 1962c, Repeated reversal of training in Octopus, Q. J. Exp. Psychol., 14, 206–222.Google Scholar
  192. Young, J. Z., 1963a, Light-and-dark-adaption in the eyes of some cephalopods, Proc. Zool. Soc. Lond., 140, 255–272.Google Scholar
  193. Young, J. Z., 1963b, The number and sizes of nerve cells in Octopus, Proc. Zool. Soc. London., 140, 229–254.Google Scholar
  194. Young, J. Z., 1963c, Some essentials of neural memory mechanisms. Paired centres that regulate and address the signals of the results of action, Nature (Lond.), 198, 626–630.Google Scholar
  195. Young, J. Z., 1964a, “A Model of the Brain,” Clarendon Press, Oxford.Google Scholar
  196. Young, J. Z., 1964b, Paired centres for the control of attack byOctopus, Proc. R. Soc. Lond. B. Biol. Sci., 159, 568–588.Google Scholar
  197. Young, J. Z., 1965a, Influence of previous preferences on the memory ofOctopus vulgaris after removal of the vertical lobe, J. Exp. Biol., 43, 595–603.PubMedGoogle Scholar
  198. Young, J. Z., 1965b, Two memory stores in one brain, Endeavour Engl. Ed., 24, 13–20.Google Scholar
  199. Young, J. Z., 1965c, The organisation of a memory system, Proc. R. Soc. Lond. B. Biol. Sci., 163, 285–320.PubMedGoogle Scholar
  200. Young, J. Z., 1968, Reversal of a visual preference in Octopus after removal of the verticallobe, J. Exp. Biol., 49, 413–419.Google Scholar
  201. Young, J. Z., 1970, Short and long memories in Octopus and the influence of the vertical lobe system, J. Exp. Biol., 52, 385–393.Google Scholar
  202. Young, J. Z., 1971, “The Anatomy of the Nervous System of Octopus vulgaris,” Clarendon Press, Oxford.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • G. D. Sanders
    • 1
  1. 1.Psychology DepartmentCity of London PolytechnicLondonEngland

Personalised recommendations