Learning in Gastropod Mollusks

  • A. O. D. Willows


Among the six classes of mollusks, apart from that on the cephalopods the greatest amount of work relating to behavioral and neuronal plasticity has been done on the gastropods. The Gastropoda are a very large (over 80,000 species) and diverse class which have invaded every type of habitat with the exception of the aerial one. Their particular attractions to workers in neurophysiology and behavior are basically two. First, their diversity increases the likelihood that there will be one or several species readily available virtually anywhere on earth. A stroll in the marine intertidal is almost certain to turn up several snails, limpets, or nudibranchs, and numerous species of the families Lymnaeidae, Planorbidae, and Physidae inhabit pond, stream, and lake shores. There are snails and slugs inhabiting most leafy areas and dry grasslands. Even the sands of parched deserts support a gastropod fauna; e.g., Sphincterochila survives in the Negev (Yom-Tov, 1970; Schmidt-Nielsen et al., 1971).


Classical Conditioning Interstimulus Interval Abdominal Ganglion Withdrawal Response Pond Snail 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, D. P., 1962, Observations on the gastropod Terebellum terebellum (Linnaeus) with particular reference to the behavior of the eyes, during burrowing, Veliger, 5, 1–3.Google Scholar
  2. Abraham, F. D., and Willows, A. O. D., 1971, Plasticity of a fixed action pattern of behavior in the sea slug Tritonia diomdia, Comm. Behav. Biol. A6, 271–280.Google Scholar
  3. Agersborg, H. P. K., 1922, Notes on the locomotion of the nudibranchiate mollusc Den-dronotusgiganteus O’Donoghue, Biol. Bull., 42, 257–265.Google Scholar
  4. Agersborg. H. P. K., 1923, The morphology of Melibe leonina, Quart. J. Microscop. Sci., 67, 507–592.Google Scholar
  5. Allen, E. J., and Nelson, E. W., 1911, On the artificial culture of marine organisms, J. Marine Biol. Asso. U.K., 8, 421–474.Google Scholar
  6. Amoroso, E. C., Baxter, M. I., Chiquoine, A. D., and Nisbet, R. H., 1964, The fine structure of neurons and other elements in the nervous system of the giant African land snail Archachatina marginata, Proc. Roy. Soe. Ser. B, 160, 167–180.Google Scholar
  7. Ankel, W. E., 1936, Prosobranchia, in “Die Tierwelt der Nord-und Ostsee,” Vol. 9, Akademische, Verlagsgesellschaft, Leipzig.Google Scholar
  8. Ansell, A. D., 1969, Defensive adaptations to predation in the Mollusca, Symp. Marine Biol. Ass. India, pp. 487–512.Google Scholar
  9. Arey, L. B., and Crozier, W. J., 1919, The nervous organization of a nudibranch, Proc. Natl. Acad. Sci., 5, 498–500.PubMedGoogle Scholar
  10. Arey, L. B., and Crozier, W. J., 1921, On the natural history of Onchidium, J. Exptl. Zool., 32, 443–502.Google Scholar
  11. Arnold, D. C., 1957, The response of the limpet Patella vulgata L., to waters of different salinities, J. Marine Biol. Ass. U.K., 36, 121–128.Google Scholar
  12. Arvanitaki, A., and Chalazonitis, N., 1956, Activations du soma géant d’Aplysia par voie antidrome (derivation endocytaire), Arch. Sci. Physiol., 10, 95–128.Google Scholar
  13. Arvanitaki, A., and Chalazonitis, V., 1960, Photopotentials d’excitation et d’inhibition de differents somata identifiables (Aplysia). Activations monochromatiques, Bull. Inst. Oceanogr. (Monaco), 57, 1–83.Google Scholar
  14. Arvanitaki, A., and Chalazonitis, N., 1961, Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells (giant ganglion cells of Aplysia), in “Nervous Inhibition” (E. Florey, ed.),pp. 194–231, Pergamon Press, Oxford.Google Scholar
  15. Bailey, D. S., and Laverack, M. S., 1963, Central responses to chemical stimulation of a gastropod osphradium, Nature (Lond.), 200, 1122–1123.Google Scholar
  16. Bailey, D. S., and Laverack, M. S., 1966, Aspects of the neurophysiology of Buccinum undatum L. (Gastropoda). I. Central responses to stimulation of the osphradium. J. Exptl. Biol., 44, 131–148.Google Scholar
  17. Barraud, E. M., 1957, The copulatory behaviour of the freshwater snail (Limnaea stagnalis L.), Brit. J. Anim. Behav., 5, 55–59.Google Scholar
  18. Barth, J., 1964, Intracellular recordings from photosensory neurons in the eyes of a nudibranch mollusc (Hermissenda crassicornis), Comp. Biochem. Physiol., 11, 311–315.PubMedGoogle Scholar
  19. Berg, C. J., 1971, Ontogeny of the behavior of a strombid gastropod, Am. Zoologist, 11, 640.Google Scholar
  20. Bethe, A., 1903, “Allegemeine Anatomie und Physiologie des Nervensystems,” Thieme, Leipzig.Google Scholar
  21. Born, E., 1910, Beiträge zur feineren Anatomie der Phyllirhae bucephala, Z. Wiss. Zool., 97, 105–192.Google Scholar
  22. Bovbjerg, R. V., 1965, Feeding and dispersal in the snail Stagnicola reflexa (Basommatophora: Lymnaeidae), Malacologia, 2, 199–207.Google Scholar
  23. Bovbjerg, R. V., 1968, Responses to food in lymnaid snails, Physiol. Zool., 41, 412–423.Google Scholar
  24. Brown, A. C., 1961, Physiological-ecological studies on two sandy-beach Gastropoda from South Africa; Bullia digitalis Meuschen and Bullia laevissima (Ginelin), Z. Morphol. Okol. Tiere, 49, 629–657.Google Scholar
  25. Brown, A. C., and Noble, R. G., 1960, Function of the osphradium in Bullia (Gastropoda), Nature (Lond.), 188, 1045.Google Scholar
  26. Bruner, J., and Tauc, L., 1964, Les modifications de l’activité synaptique au cours d’habituation chez I’Aplysie, J. Physiol. (Paris), 56, 306.Google Scholar
  27. Bruner, J., and Tauc, L., 1965a, La plasticité synaptique impliquée dans le processus d’habituation chez I’Aplysie, J. Physiol. (Paris), 57, 230.Google Scholar
  28. Bruner, J., and Tauc, L., 1965, Long-lasting phenomena in the molluscan nervous system, Symp. Soc. Exptl. Biol., 20, 457–475.Google Scholar
  29. Bullock, T. H., 1953, Predator recognition and escape responses of some intertidal gastropods in the presence of starfish, Behaviour, 4-6, 130–146.Google Scholar
  30. Burdon-Jones, C., and Charles, G. H., 1958, Light reactions of littoral gastropods, Nature (Lond)., 181, 129–131.Google Scholar
  31. Buytendijk, F. J. J., 1921, Une formation d’habitude simple chez le limacon d’eau douce (Limnaea), Arch. Neerl. Physiol., 5, 458–466.Google Scholar
  32. Carew, T. J., Castellucci, V. F., and Kandel, E. R., 1971, An analysis of dishabituation and sensitization of the gill-withdrawal reflex in Aplysia, Internat. J. Neurosci., 2, 79–98.Google Scholar
  33. Carew, T. J., Pinsker, H. M., and Kandel, E. R., 1972, Long-term habituation of a defensive withdrawal reflex in Aplysia, Science, 175, 451–454.PubMedGoogle Scholar
  34. Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E. R., 1970, Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia, Science, 167, 1745–1748.PubMedGoogle Scholar
  35. Charles, G. H., 1966, in “Physiology of Mollusca” (K. M. Wilbur and C. M. Yonge, eds.), Vol. 2, pp. 455–521, Academic Press, New York.Google Scholar
  36. Chase, L., 1953, The aerial mating of the great slug, Discovery, 13, 356–359.Google Scholar
  37. Clark, R. B., 1964, “Dynamics in Metazoan Evolution,” pp. 53–64, Clarendon Press, Oxford.Google Scholar
  38. Coggeshall, R. E., Yaksta, B. A., and Swartz, F. J., 1970, A cytophotometric analysis of the DNA in the nucleus of the giant cell R-2, in Aplysia, Chromosoma, 32, 205–212.PubMedGoogle Scholar
  39. Colton, H. S., 1918, Fertilization in the air-breathing pond snails, Biol. Bull., 35, 48–49.Google Scholar
  40. Cook, A., 1971, Habituation in a freshwater snail (Limnaea stagnalis), Anim. Behav., 19, 463–474.Google Scholar
  41. Cook, A., Bamford, O. S., Freeman, J. D. B., and Teideman, D. J., 1969, A study of the homing habit of the limpet, Anim. Behav., 17, 330–339.Google Scholar
  42. Cook, S. B., 1969, Experiments on homing in the limpet Siphonaria normalis, Anim. Behav. 17, 679–682.Google Scholar
  43. Copeland, M., 1918, The olfactory reactions and organs of the marine Alectrion obseolata (Say) and Busycon canaliculatum Lin., J. Exptl. Zool., 25, 177–227.Google Scholar
  44. Crabb, E. D., 1927, The fertilization process in the snail Lymnaea stagnalis appressa Say, Biol. Bull., 53, 67–108.Google Scholar
  45. Crisp, M., 1969, Studies on the behaviour of Nassarius obsoletus, Biol. Bull., 136, 355.Google Scholar
  46. Crozier, W. J., and Arey, L. B., 1919, Sensory reactions of Chromodoris zebra, J. Exptl. Zool., 29, 261–310.Google Scholar
  47. Dakin, W. J., 1910, The visceral ganglion of Pecten, with some notes on the physiology of the nervous system and an inquiry into the innervation of the osphradium in the Lamellibranchiata, Mitt. Zool. Staz. Neapel, 20, 1–40.Google Scholar
  48. D’Asaro, C., 1965, Organogenesis, development and metamorphosis in the Queen conch, Strombus gigas, with notes on breeding habits, Bull. Marine Sci., 15, 359–416.Google Scholar
  49. Davis, J. R. A., 1895, The habits of limpets, Nature (Lond.), 51, 511–512.Google Scholar
  50. Dawson, J., 1911, The biology of Physa, Behav. Monogr., 1, No. 4.Google Scholar
  51. Dennis, M. J., 1967, Interactions between the five receptor cells of a simple eye (in Hermis-senda crassicornis), in “Conference on Invertebrate Nervous Systems: Their Significance for Mammalian Neurophysiology” (C. A. G. Wiersma, ed.), pp. 259–262, University of Chicago Press, Chicago.Google Scholar
  52. Dorsett, D. A., Willows, A. O. D., and Hoyle, G., 1969, Centrally generated nerve impulse sequences determining swimming behavior in Tritonia, Nature (Lond.), 224, 711–712.Google Scholar
  53. Dorsett, D. A., Willows, A. O. D., and Hoyle, G., 1973, The neuronal basis of behavior in Tritonia. IV. The central origin of a fixed action pattern demonstrated in the isolated brain, J. Neurobiol., in press.Google Scholar
  54. Edelstam, C., and Palmer, C., 1950, Homing behaviour in gastropods, Oikos, 2, 259–270.Google Scholar
  55. Edmunds, M., 1968, On the swimming and defensive response of Hexabranchus marginatus (Mollusca, Nudibranchia), J. Linn. Soc. Zool., 47, 425–429.Google Scholar
  56. Farmer, W. M., 1970, Swimming gastropods (Opisthobranchia and Prosobranchia), Veliger, 13, 73–80.Google Scholar
  57. Feder, H. M., and Christensen, A. M., 1966, Aspects of asteroid biology, in “Physiology of Echinodermata” (Richard A. Boolootian, ed.), pp. 87–127, Interscience (Wiley), New York.Google Scholar
  58. Fischel, W., 1931, Dressurversuche an Schnecken, Z. Vergl. Physiol., 15, 50–70.Google Scholar
  59. Fischer, H., 1898, Quelques remarques sur les moeurs des Patelles, J. Conchylol., 46, 314–318.Google Scholar
  60. Fisher-Piette, E., 1935, Histoire d’une mouliére. Observations sur une phase de déséquilibre faunique, Bull. Biol. France Belg., 69, 165–177.Google Scholar
  61. Frankel, G., 1927, Geotaxis und Phototaxis von Littorina, Z. Vergl. Physiol., 5, 585–597.Google Scholar
  62. Frazier, W. T., Waziri, R., and Kandel, E. R., 1965, Alterations in the frequency of spontaneous activity in Aplysia neurons with contingent and non-contingent nerve stimulation, Fed. Proc, 24, 522.Google Scholar
  63. Frazier, W. T., Kandel, E. R., Kupfermann, I., Waziri, R., and Coggeshall, R. E., 1967, Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica, J. Neurophysiol., 30, 1288–1351.Google Scholar
  64. Fretter, V., and Graham, A., 1962, “British Prosobranch Mollusks,” 744 pp., Ray Society, London.Google Scholar
  65. Fretter, V., and Graham, A., 1964, in “Physiology of Mollusca” (K. M. Wilbur and C. M. Yonge, eds.), Vol. 1, pp. 127–164, Academic Press, New York.Google Scholar
  66. Fretter, V., and Montgomery, M. C., 1968, The treatment of food by prosobranch veligers, J. Marine Biol. Ass. U.K., 48, 499–520.Google Scholar
  67. Garth, T. R., 1924, The learning curve for a snail, Science, 59, 440.PubMedGoogle Scholar
  68. Garth, T. R., and Mitchell, M. P., 1926, The learning curve of a land snail, J. Comp. Physiol. Psychol., 6, 103–113.Google Scholar
  69. Giller, E., and Schwartz, J. H., 1968, Choline acetyltransferase: Regional distribution in the abdominal ganglion of Aplysia, Science, 161, 90PubMedGoogle Scholar
  70. Gorman, A. L. F., and Mirolli, M., 1969, The input-output organization of a pair of giant neurons in the mollusc, Anisodoris nobilis (MacFarland), J. Exptl. Biol., 51, 615–634.Google Scholar
  71. Hewatt, W. G., 1940, Observations on the homing limpet, Acmaea scabra Gould, Am. Midl. Naturalist, 24, 205–208.Google Scholar
  72. Holmgren, B., and Frenk, S., 1961, Inhibitory phenomena and “habituation” at the neuronal level, Nature (Lond.), 192, 1294–1295.Google Scholar
  73. Howells, H. H., 1942, The structure and function of the alimentary canal of Aplysia punctata, Quart. J. Microscop. Sci., 83, 357–396.Google Scholar
  74. Hoyle, G., and Willows, A. O. D., 1973, The neuronal basis of behavior in Tritonia. II. The relationship of muscular contraction to nerve impulse pattern, J. Neurobiol., in press.Google Scholar
  75. Hughes, G. M., 1967, The left and right giant neurons (LGC and RGC) of Aplysia, in “Neurobiology of Invertebrates” (J. Salanki, ed.), pp. 423–441, Plenum Press, New York.Google Scholar
  76. Hughes, G. M., and Tauc, L., 1963, An electrophysiological study of the anatomical relations of two giant nerve cells in Aplysia depilans, J. Exptl. Biol., 40, 469–486.Google Scholar
  77. Humphrey, G., 1930, Le Chatelier’s rule, and the problem of habituation and dehabituation in Helix albolabris, Psychol. Forsch., 13, 113–127.Google Scholar
  78. Hurst, A., 1968, The feeding mechanism and behaviour of the opisthobranch, Melibe leonina, Symp. Zool. Soc. Lond., 22, 151–166.Google Scholar
  79. Hutchinson, G. E., 1930, Two biological aspects of psycho-analytic theory, Internat. J. Psychoanal., 1, 83–86.Google Scholar
  80. Jahan-Parvar, B., 1970, Conditioned response in Aplysia californica, Am. Zoologist, 10, 287.Google Scholar
  81. Jahan-Parvar, B., 1971, Neuronal analogs of classical conditioning in Aplysia californica, Proc. Internat. Union Physiol. Sci., 9 (abst.).Google Scholar
  82. Jahan-Parvar, B., and von Baumgarten, R. J., 1967, Untersuchungen zur Spezifitätsfrage der heterosynaptischen Facilitation bei Aplysia californica, Pflugers Arch. Ges. Physiol., 295, 347–360.Google Scholar
  83. Jahan-Parvar, B., Smith, M., and von Baumgarten, R., 1969, Activation of neurosecretory cells in Aplysia by osphradial Stimulation, Am. J. Physiol., 216, 1246–1257.Google Scholar
  84. Jones, H. D., and Trueman, E. R., 1970, Locomotion of the limpet, Patella vulgata, J. Exptl. Biol., 52, 201–216.Google Scholar
  85. Kandel, E. R., and Spencer, W. A., 1968, Cellular neurophysiological approaches in the study of learning, Physiol. Rev., 48, 65–134.PubMedGoogle Scholar
  86. Kandel, E. R., and Tauc, L., 1965a, Heterosynaptic facilitation in neurons of the abdominal ganglion of Aplysia depilans, J. Physiol. (Lond.), 181, 1–27.Google Scholar
  87. Kandel, E. R., and Tauc, L., 1965b, Mechanisms of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans, J. Physiol. (Lond.), 181, 28–47.Google Scholar
  88. Karnaukhov, V. N., 1971, Carotenoids in oxidative metabolism of molluskan neurons, Exptl. Cell Res., 64, 301–306.PubMedGoogle Scholar
  89. Kater, S. B., and Kaneko, 1972, An endogenously bursting neuron in the gastropod mollusc, Helisoma trivolvis. Characterization of activity, In Vivo, J. Comp. Physiol. 79, 1–14.Google Scholar
  90. Kater, S. B., Heyer, C., and Hegmann, J. P., 1971, Neuromuscular transmission in the gastropod mollusc Helisoma trivolvis: Identification of motorneurons, Z. Vergl. Physiol., 74, 127–139.Google Scholar
  91. Kennedy, D., 1960, Neural photoreceptors in a lamellibranch mollusc, J. Gen. Physiol., 44, 227–299.Google Scholar
  92. Kohn, A. J., 1961, Chemoreception in gastropod molluscs, Am. Zoologist, 1, 291–308.Google Scholar
  93. Kristan, W. B., 1971, Plasticity of firing patterns in neurons of Aplysia pleural ganglion, J. Neurophysiol., 34, 321–336.PubMedGoogle Scholar
  94. Kristan, W. B., and Gerstein, G. L., 1970, Plasticity of synchronous activity in a small neural net, Science, 169, 1336–1339.PubMedGoogle Scholar
  95. Kuhlmann, D., 1969, Bestimmung des DNS-Gehaltes in Zellkernen des Nervengewebes von Helix pomatia L. und Planorbarius corneus L. (Stylommatophora und Basommatophora, Gastropoda), Experientia, 25(8), 848–849.PubMedGoogle Scholar
  96. Kupfermann, I., 1968, A circadian locomotory rhythm in Aplysia californica, Physiol. Behav., 3, 179–181.Google Scholar
  97. Kupfermann, I., and Kandel, E. R., 1969, Neuronal controls of a behavioral response mediated by the abdominal ganglion of Aplysia, Science, 164, 847–850.PubMedGoogle Scholar
  98. Kupfermann, I., and Pinsker, H., 1969, Plasticity in Aplysia neurons and some simple neuronal models of learning, in “Reinforcement” (J. Tapp, ed.), pp. 356–386, Academic Press, New York.Google Scholar
  99. Kupfermann, I., and Pinsker, H., 1970, Cellular models of learning and cellular mechanisms of plasticity in Aplysia, in “Biology of Memory,” pp. 163–174, Academic Press, New York.Google Scholar
  100. Kupfermann, I., Castellucci, V., Pinsker, H., and Kandel, E. R., 1970, Neuronal correlates of habituation and dishabituation of the gill withdrawal reflex in Aplysia, Science, 167, 1743–1745.PubMedGoogle Scholar
  101. Kupfermann, I., Pinsker, H., Castellucci, V., and Kandel, E. R., 1971, Central and peripheral control of gill movements in Aplysia, Science, 174, 1252–1255.PubMedGoogle Scholar
  102. Lasek, R. J., and Dower, W. J., 1971, Aplysia californica: Analysis of nuclear DNA in individual nuclei of giant neurons, Science, 172, 278–280.PubMedGoogle Scholar
  103. Laverack, M. S., and Bailey, D. F., 1963, Movement receptors in Buccinum undatum, Comp. Biochem. Physiol., 8, 289–298.Google Scholar
  104. Laxton, J. H., 1971, Feeding in some Australasian Cymatiidae (Gastropoda: Prosobranchia), Zool. J. Linn. Soc., 50, 1–9.Google Scholar
  105. Lebour, M. V., 1937, The eggs and larvae of the British prosobranchs with special reference to those living in the plankton, J. Marine Biol. Ass. U.K., 22, 105–166.Google Scholar
  106. Lee, R. M., 1969, Effects of contingent water level variation, Comm. Behav. Biol., 3, 157–164.Google Scholar
  107. Lee, R. M., 1970, Aplysia behavior: Operant-response differentiation, Proc. Am. Psychol. Ass., Div. 6, 249–25Google Scholar
  108. Lemche, H., 1957, A new living deep-sea mollusc of the cambro-Devonian class, Mono-placophora, Nature (Lond.), 179, 413–416.Google Scholar
  109. Lickey, M. E., 1968, Learned behavior in Aplysia vaccaria, J. Comp. Physiol. Psychol., 66, 712–718.Google Scholar
  110. Lissman, H. W., 1945a, The mechanism of locomotion in gastropod molluscs. I. Kinematics, J. Exptl. Biol., 21, 58–69.Google Scholar
  111. Lissman, H. W., 1945b, The mechanism of locomotion in gastropod molluscs. II. Kinetics, J. Exptl. Biol., 22, 37–50.Google Scholar
  112. Lukowiak, K., and Jacklet, J. W., 1972, Habituation and dishabituation: Interactions between peripheral and central nervous systems in Aplysia, Science, 178, 1306–1308.PubMedGoogle Scholar
  113. MacGinitie, G. E., 1934, The egg-laying activities of the sea-hare, Tethys californicns (Cooper), Biol. Bull., 67, 300–103.Google Scholar
  114. Margolin, A. S., 1964, A running response of Acmaea to seastars, Ecology, 45, 191–193.Google Scholar
  115. McCaman, R. E., and Dewhurst, S. A., 1971, Metabolism of putative transmitters in individual neurons of Aplysia californica, J. Neurochem., 18, 1329–1336.PubMedGoogle Scholar
  116. Medioni, J., 1959, Étude de la sensibilité visuelle de Limnaea stagnalis par la méthode de la réaction skioptique, Compt. Rend. Soc. Biol. Paris, 152, 840.Google Scholar
  117. Michelson, E. H., 1960, Chemoreception in the snail Australorbis glabratus, Am. J. Trop. Med. Hyg., 9, 480–487.PubMedGoogle Scholar
  118. Miller, S. E., 1969, Locomotion, foot form and tenacity in the Muricacea (Gastropoda), Masters thesis, University of Washington.Google Scholar
  119. Morton, J. E., 1954, The biology of Limacina retroversa, J. Marine Biol. Ass. U. K., 33, 297–312.Google Scholar
  120. Morton, J. E., 1964, Locomotion, in “Physiology of Mollusca” (K. M. Wilbur and C. M. Yonge, eds.), Vol. 1, pp. 383–423, Academic Press, New York.Google Scholar
  121. Morton, J. E., 1967, “Molluscs,” 244 pp., Hutchinson University Library, London.Google Scholar
  122. Morton, J. E., and Holme, V. A., 1955, The occurrence at Plymouth of the opisthobranch Akera bullata with notes on its habits and relationships, J. Marine Biol. Ass. U.K., 34, 101–112.Google Scholar
  123. Newell, G. E., 1965, The eye of Littorina littorea, Proc. Zool. Soc. Lond., 144, 75–86.Google Scholar
  124. Newell, P. F., 1966, The nocturnal behaviour of slugs, Med. Biol. III., 16, 146–159.Google Scholar
  125. Nicaise, G., 1967, Neuro-interstitial junction in a gastropod, Glossodoris, Nature (Lond.), 216, 1222–1223.Google Scholar
  126. Nicaise, G., Pavans de Ceccatty, M., and Baleydier, C., 1968, Ultrastructures des connexions entre cellules nerveuses, musculaires et glio-interstitielles chez Glossodoris, Z. Zellforsch., 88, 470–486.PubMedGoogle Scholar
  127. Nisbet, R. H., 1961, Some aspects of the neurophysiology of Archachatina (Calachatina) marginata (Swainson), Proc. Roy. Soc. B., 154, 309–331.Google Scholar
  128. Owen, G., 1966 in “Physiology of Mollusca” (K. M. Wilbur and C. M. Yonge, eds.), pp. 1–51, Academic Press, New York.Google Scholar
  129. Paine, R. T., 1963, Food recognition and predation on opisthobranchs by Navanax inermis (Gastropoda: Opisthobranchia), Veliger, 6, 1–9.Google Scholar
  130. Parker, G. H., 1917, The pedal locomotion of the sea-hare Aplysia californica, J. Exptl. Zool., 24, 139–145.Google Scholar
  131. Parker, G. H., 1922, The leaping of the stromb, Strombus gigas, J. Exptl. Zool., 24, 139–145.Google Scholar
  132. Peretz, B., 1969, Central neuron initiation of periodic gill movements, Science, 166, 1167–1172.PubMedGoogle Scholar
  133. Peretz, B., 1970, Habituation and dishabituation in the absence of a central nervous system, Science, 9, 379–381.Google Scholar
  134. Pieron, H., 1910, L’adaptation aux obscurations répétées comme phénomène de mémoire chez les animaux inférieurs. La loi de l’oubli chez la Limnée, Arch. Psychol. Geneve, 9, 39–50.Google Scholar
  135. Pieron, H., 1911, Sur la détermination de la periode d’établissement dans les acquisitions mnémoniques, Compt. Rend. Acad. Sci. Paris, 152, 1410–1413.Google Scholar
  136. Pieron, H., 1913, Recherches experimentales sur les phénomènes de mémorie, Ann. Psychol., 19, 91–193.Google Scholar
  137. Pilkington, M. C., and Fretter, V., 1970, Some factors affecting the growth of prosobranch veligers, Helgolander Wiss. Meeresunters., 20, 576–593.Google Scholar
  138. Pinsker, H., and Kandel, E. R., 1967, Contingent modification of an endogenous bursting rhythm by monosynaptic inhibition, Physiologist, 10, 279.Google Scholar
  139. Pinsker, H., Kupfermann, I., Castellucci, V., and Kandel E. R., 1970, Habituation and dishabituation of the gill-withdrawal reflex in Aplysia, Science, 167, 1740–1742.PubMedGoogle Scholar
  140. Preston. R. J., and Lee, R. M., 1972, Feeding behavior in Aplysia californica: Role of chemical and tactile stimuli, J. Comp. Physiol. Psychol., in press.Google Scholar
  141. Retzius, G., 1892, Das sensible Nervensystem der Mollusken, Biol. Untersuch. (N.F.), 4, 11–18.Google Scholar
  142. Roach, D. K., 1967, Rhythmic muscular activity in the alimentary tract of Arion ater (L.) (Gastropoda: Pulmonata), Comp. Biochem. Physiol., 24, 865–878.Google Scholar
  143. Scheltema, R. S., 1962, Pelagie larvae of New England intertidal gastropods. I. Nassarius obsoletus Say and Nassarius videx Say, Trans. Am. Microscop. Soc., 81, 1–11.Google Scholar
  144. Schmidt-Nielsen, K., Taylor, C. R., and Shkolnik, A., 1971, Desert snails: Problems of heat, water and food, J. Exptl Biol., 55, 385–398.Google Scholar
  145. Smith, S. T., and Carefoot, T. H., 1967, Induced maturation of gonads in Aplysia punctata Cuvier, Nature, 215, 652–653.Google Scholar
  146. Snyder, N. F. R., and Snyder, H. A., 1971, Pheromone-mediated behaviour of Fasciolaria tulipa, Anim. Behav., 19, 257–268.Google Scholar
  147. Sokolov, V. A., 1959, Conditioned reflex in Physa acuta, Vestnik Leningrad Univ. Ser. Biol., 2(9), 82–86.Google Scholar
  148. Stinnakre, J., and Tauc, L., 1966, Effects de l’activation de l’osphradium sur les neurones du système nerveux central de l’Aplysie, J. Physiol. (Paris), 58, 266–267.Google Scholar
  149. Stinnakre, J., and Tauc, L., 1969, Central neuronal response to the activation of osmore-ceptors in the ophradium Of Aplysia, J. Exptl. Biol., 51, 347–361.Google Scholar
  150. Strumwasser, F., 1963, A circadian rhythm of activity and its endogenous origin in a neuron. Fed. Proc., 22, 220.Google Scholar
  151. Strumwasser, F., 1965, The demonstration and manipulation of a circadian rhythm in a single neuron, in “Circadian Clocks” (J. Aschoff, eds.), pp. 442–462, North-Holland, Amsterdam.Google Scholar
  152. Strumwasser, F., 1967a, Membrane and intracellular mechanisms governing endogenous activity in neurons, in “Physiological and Biochemical Aspects of Nervous Integration” (F. D. Carlson, ed.), pp. 329–341, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  153. Strumwasser, F., 19676, Neurophysiological aspects of rhythms, in “The Neurosciences” (G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), pp. 516–528, Rockefeller Univ. Press, V.Y.Google Scholar
  154. Szal, R., 1971, New sense organ of primitive gastropods, Nature (Lond.), 229, 490–492.Google Scholar
  155. Tardy, J., 1970, Contribution à l’étude des metamorphoses chez les nudibranches, Ann. Sci. Nat. Zool., 12, 299–370.Google Scholar
  156. Tauc, L., and Epstein, R., 1967, Heterosynaptic facilitation as a distinct mechanism in Aplysia, Nature (Lond.), 214, 724–725.Google Scholar
  157. Thompson, E. L., 1917, An analysis of the learning process in the snail, Physa gyrina Say, Behav. Monogr., 3.Google Scholar
  158. Thompson. T. E., 1958, The natural history, embryology, larval biology, and post larval development of Adalaria proxima (Alder and Hancock) (Gastropoda Opisthobranchia), Phil. Trans. Roy. Soc. Ser. B, 242, 1–58.Google Scholar
  159. Thompson, T. E., 1962, Studies on the ontogeny of Tritonia hombergi Cuvier (Gastropoda Opisthobranchia), Phil. Trans. Roy. Soc. Ser. B, 245, 171–218.Google Scholar
  160. Thompson, T. E., 1964, Grazing and the life cycles of British nudibranchs, in “Fourth British Ecological Society Symposium (D. J. Crisp, ed.), pp. 274–297, Blackwell, Oxford.Google Scholar
  161. Thompson, R. F., and Spencer, W. A., 1966, Habituation: A model phenomenon for behavior, Psychol. Rev., 173, 1643.Google Scholar
  162. Thorpe, W. H., 1963, “Learning and Instinct in Animals,” 558 pp., Methuen, London.Google Scholar
  163. Thorson, G., 1946, Reproduction and larval development of Danish marine bottom invertebrates, Medd. Komm. Havundersg. Kbh. (Ser. Plankton), 4, 1–523.Google Scholar
  164. Turner, R. D., 1959, Notes on the feeding of Melongena corona, Nautilus, 73, 11–13.Google Scholar
  165. Veratti, E., 1900, Ricerche sul sistema nervoso dei Limax, Mem. Ist. Lombardo, 18, 167–179.Google Scholar
  166. Verlaine, L., 1936, L’instinct et l’intelligence chez les mollusques. Les gastéropodes perceurs de coquilles, Mem. Mus. Hist. Nat. Belg., 3, 387–394.Google Scholar
  167. von Baumgarten, R., and Hukuhara, T., 1969, The role of the interstimulus interval in heterosynaptic facilitation in Aplysia californica, Brain Res., 16, 369–381.Google Scholar
  168. von Baumgarten, R., and Jahan-Parvar, B., 1967a, Beitrag zum Problem der heterosynaptischen Facilitation in Aplysia californica, Pflügers Arch. Ges. Physiol., 295, 328–346.Google Scholar
  169. von Baumgarten, R., and Jahan-Parvar, B., 1967b, Time course of repetitive heterosynaptic facilitation in Aplysia californica, Brain Res., 4, 295–297.Google Scholar
  170. von Buddenbrock, W., 1919, Analyse der Lichtreaktionen der Helicidien, Zool. Jahrb., Abt. Allgem. Zool. Physiol. Tiere, 37, 315–360.Google Scholar
  171. Walne, P. R., 1964, in “Physiology of Mollusca” (K. M. Wilbur and C. M. Yonge, eds.), Vol. 1, pp. 197–210, Academic Press, New York.Google Scholar
  172. Webb, M., Moodley, L. G., and Thandar, A. S., 1969, The copulatory mechanism in Onchidium peronii, S. Afr. J. Sci., 65, 107–112.Google Scholar
  173. Wells, M. J., 1965, Learning by marine invertebrates, Advan. Marine Biol., 3, 1–62.Google Scholar
  174. Wells, M. J., and Wells, J., 1971, Conditioning and sensitization in snails, Anim. Behav., 19, 305–312.PubMedGoogle Scholar
  175. Willows, A. O. D., 1967, Behavioral acts elicited by stimulation of single, identifiable brain cells, Science, 157, 570–574.PubMedGoogle Scholar
  176. Willows. A. O. D., 1969, Neuronal network triggering a fixed action pattern, Science, 166, 1549–1551.PubMedGoogle Scholar
  177. Willows, A. O. D., Dorsett, D. A., and Hoyle, G., 1973a, The neural basis of behavior in Tritonia. I. Functional organization of the central nervous system, J. Neurobiol., in press.Google Scholar
  178. Willows, A. O. D., Dorsett, D. A., and Hoyle, G., 19736, The neural basis of behavior in Tritonia. III. Neuronal mechanism of a fixed action pattern, J. Neurobiol., in press.Google Scholar
  179. Wolff, H. G., 1969, Einige Ergebnisse zur Ultrastruktur der Statocysten von Limax maximus, Limax flavus und Arion empiricorum (Pulmonata), Z. Zellforsch., 100, 251–270.PubMedGoogle Scholar
  180. Wolff, H. G., 1970, Statocystenfunktion bei einigen Landpulmonaten (Gastropoda), Z. Vergl. Physiol., 69, 326–366.Google Scholar
  181. Wolper, C., 1950, Das Osphradium der Paludina vivipara, Z. Vergl. Physiol., 32, 272–286.Google Scholar
  182. Wurtz, R. H., Castellucci, V. F., and Nusrala, J. M., 1967, Synaptic plasticity: The effect of the action potential in the post-synaptic neuron, Exptl. Neurol., 18, 350–368.Google Scholar
  183. Yerkes, R. M., 1912, The intelligence of the earthworm, J. Anim. Behav., 2, 332.Google Scholar
  184. Yom-Tov Y., 1970, The effect of predation on population densities of some desert snails, Ecology, 51, 907–911.Google Scholar
  185. Yonge, C. M., 1937, The biology of Aporrhais pas-pelicani (L.) and A. serresiana (Mich.), J. Marine Biol. Ass. U.K., 21, 687–703.Google Scholar
  186. Yonge, C. M., 1938, Evolution of ciliary feeding in the Prosobranchia with an account of feeding in Copulus ungaricus, J. Marine Biol. Ass. U.K., 22, 453–468.Google Scholar
  187. Yonge, C. M., 1947, The palliai organs in the aspidobranch Gastropoda and their evolution throughout the Mollusca, Phil. Trans. Roy. Soc. Ser. B, 232, 443–518.Google Scholar
  188. Young, J. Z., 1962, The retina of cephalopods and its degeneration after optic nerve section, Phil. Trans. Roy. Soc. Ser. B, 245, 1–18.Google Scholar
  189. Zs.-Nagy, I., 1971, The lipochrome pigment of molluscan neurons as a specific electron acceptor, Comp. Biochem. Physiol., 40A, 595–602.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • A. O. D. Willows
    • 1
  1. 1.Department of ZoologyUniversity of WashingtonSeattleUSA

Personalised recommendations