Learning in Insects Except Apoidea

  • Thomas M. Alloway


The class Insecta of the phylum Arthropoda contains by far the largest assemblage of organisms in the animal kingdom, approximately 75% of all known living animal species being insect species (Ross, 1965). When the number of species, the large size of insect populations, and the extremely important effects which these populations have on other organisms are considered together, one might almost go so far as to say that the insects are the dominant life form on this planet. For these reasons, and also because of the importance of insects to agriculture and their role as vectors in the spread of disease, entomology has long been an important subdiscipline of zoology. However, entomological research has largely been directed toward establishing a satisfactory understanding of insect evolution and toward investigating those aspects of insect physiology which are directly related to the control of insect pests. Neither entomologists nor animal behaviorists have given the behavior of this extremely important group of animals the attention it deserves.


Classical Conditioning Avoidance Learning Ventral Nerve Cord Choice Point Thoracic Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alloway, T. M., 1969, Effects of low temperature upon acquisition and retention in the grain beetle, Tenebrio molitor, J. Comp. Physiol. Psychol., 69, 1–8.Google Scholar
  2. Alloway, T. M., 1970, Methodological factors affecting the apparent effects of exposure to cold upon retention in the grain beetle, Tenebrio molitor, J. Comp. Physiol. Psychol., 72, 311–317.Google Scholar
  3. Alloway, T. M., 1972, Retention of learning through metamorphosis in the grain beetle, Tenebrio molitor, Am. Zoologist, 12, 471–477.Google Scholar
  4. Alloway, T. M., and Routtenberg, A., 1967, “Reminiscence” in the cold flour beetle (Tenebrio molitor), Science, 158, 1066–1067.PubMedGoogle Scholar
  5. Aranda, L. C., and Luco, J. V., 1969, Further studies of an electric correlate to learning: Experiments in an isolated insect ganglion, Physiol. Behav., 4, 133–137.Google Scholar
  6. Baxter, C., 1957, Habituation of the roach to puffs of air, Anat. Rec., 128, 521 (abst.).Google Scholar
  7. Bitterman, M. E., 1960, Towards a comparative psychology of learning, Am. Psychologist, 15, 704–712.Google Scholar
  8. Bitterman, M. E., 1965, The evolution of intelligence, Sci. Am., 212, 92–100.PubMedGoogle Scholar
  9. Borsellino, A., Pieratoni, R., and Schietti-Cavazza, B., 1967, Persistenza nello stadio adulto di Tenebrio molitor (coleottero tenebrionide) de comportamenti indotti allo stato larvale, Atti Congr. Ann., Grouppo Naz. Cibernet. C.N.R., Pisa, pp. 29-36.Google Scholar
  10. Borsellino, A., Pieratoni, R., and Schietti-Cavazza, B., 1970, Survival in adult mealworm beetles (Tenebrio molitor) of learning acquired at the larval stage, Nature (Lond.), 225, 963–964.Google Scholar
  11. Brookshire, K. H., 1970, Comparative psychology of learning, in “Learning: Interactions” (M. H. Marx, ed.), pp. 290–364, Collier-Macmillan, Toronto.Google Scholar
  12. Brown, B. M., and Noble, E. P., 1967, Cycloheximide and learning in the isolated cockroach ganglion, Brain Res., 6, 363–366.PubMedGoogle Scholar
  13. Brown, B. M., and Noble, E. P., 1968, Cycloheximide, amino acid incorporation, and learning in the isolated cockroach ganglion, Biochem. Pharmacol., 17, 2371–2374.PubMedGoogle Scholar
  14. Bullock, T. H., and Horridge, G. A., 1965, “Structure and Function in the Nervous Systems of Invertebrates,” W. H. Freeman, London and San Francisco.Google Scholar
  15. Chapman, R. F., 1969, “The Insects: Structure and function,” English Universities Press, London.Google Scholar
  16. Chauvin, R., 1947, Études sur le comportement de Blattella germanica dans divers types de labyrinthes, Bull. Biol. France Belg., 61, 92–128.Google Scholar
  17. Cherkashin, A. N., Sheyman, E. M., and Stafekhina, V. S., 1968: O sokhanenii vremennikh svyazei oo nasekhomikh v protsesse metamorfoza (Conservation of conditioned reflexes during metamorphosis in insects), Zh. Evol. Biochim. Fiziol., 117-120.Google Scholar
  18. Cushing, J. E., Jr., 1941, An experiment on olfactory conditioning in Drosophila guttifera, Proc. Nat. Acad. Sci., 50, 163–178.Google Scholar
  19. Dethier, V. G., 1969, Feeding behavior of the blowfly, in “Advances in the Study of behavior” (D. S. Lehrman, R. A. Hinde, and E. Shaw, eds.), Vol. 2, Academic Press, New York.Google Scholar
  20. Dethier, V. G., Solomon, R. L., and Turner, L. H., 1965, Sensory input and central excitation and inhibition in the blowfly, J. Comp. Physiol. Psychol., 60, 303–313.PubMedGoogle Scholar
  21. Disterhoft, J. F., Nurnberger, J., and Corning, W. C., 1968, “P-R” differences in intact cockroaches as a function of testing interval, Psychon. Sci., 12, 205–206.Google Scholar
  22. Disterhoft, J. F., Haggerty, R., and Corning, W. C., 1971, An analysis of leg position learning in the cockroach yoked control, Physiol. Behav., 7, 1026–1029.Google Scholar
  23. Ebeling, W., Wagner, R. E., and Rierson, D. A., 1966, Influence of repellency on the efficacy of blatticides: I. Learned modification of behavior of the German cockroach, J. Econ. Entomol., 59, 1374–1388.PubMedGoogle Scholar
  24. Edwards, J. S., 1969, Postembryonic development and regeneration of the insect nervous system, in “Advances in Insect Physiology” (J. W. L. Beament, J. E. Treherne, and V. B. Wigglesworth, eds.), Vol. 6, pp. 97–137, Academic Press, London.Google Scholar
  25. Edwards, J. S., 1970, Neural control of development in arthropods, in “Invertebrate Nervous Systems: Their Significance for Mammalian Neurophysiology” (C. A. G. Wiersma, ed.), pp. 95–109, University of Chicago Press, Chicago.Google Scholar
  26. Eisenstein, E. M., 1965, Effects of strychnine sulfate and sodium pentobarbitol on shock-avoidance learning in an isolated insect ganglion, Proc. Seventy-third Ann. Meeting Am. Psychol. Ass., pp. 127-128.Google Scholar
  27. Eisenstein, E. M., 1968, Assessing the influence of pharmacological agents on shock avoidance in simpler systems, Brain Res., 11, 471–480.PubMedGoogle Scholar
  28. Eisenstein, E. M., 1970a, A comparison of activity and position response measures of avoidance learning in the cockroach, Periplaneta americana, Brain Res., 21, 143–147.Google Scholar
  29. Eisenstein, E. M., 1970b, The retention of shock avoidance learning in the cockroach, Periplaneta americana, Brain Res., 21, 148–150.Google Scholar
  30. Eisenstein, E. M., 1971, Learning in isolated insect ganglia: A survey of procedures and results including some theoretical speculations and suggested experiments, in “Experiments in Physiology and Biochemistry” (G. Kerkut, ed.), Vol. 2, Academic Press, New York.Google Scholar
  31. Eisenstein, E. M., and Cohen, M. J., 1965, Learning in an isolated insect ganglion, Anim. Behav., 13, 104–108.Google Scholar
  32. Eldering, F. J., 1919, Acquisition d’habitudes par les insectes, Arch. Néerl. Physiol., 3, 469–490.Google Scholar
  33. Evans, S., 1932, An experiment in maze learning in ants, J. Comp. Psychol., 14, 183–190.Google Scholar
  34. Fox, R. M., and Fox, J. W., 1964, “Introduction to Comparative Entomology,” Reinhold, New York.Google Scholar
  35. Freckleton, W. C., and Wahlstein, D., 1968, Carbon dioxide induced amnesia in the cockroach, Psychon. Sci., 12, 179–180.Google Scholar
  36. Frings, H., 1941, The loci of olfactory end-organs in the blow-fly, Cynomyia cadaverina Desvoidy, J. Exptl. Zool., 88, 65–93.Google Scholar
  37. Gates, M. F., and Allee, W. C., 1933, Conditioned behavior of isolated and grouped cockroaches on a simple maze, J. Comp. Psychol., 15, 331–358.Google Scholar
  38. Glassman, E., Henderson, A., Cordle, M., Moon, H. M., and Wilson, J. E., 1970, Effect of cycloheximide and actinomycin D on the behaviour of the headless cockroach, Nature (Lond.), 225, 967–968.Google Scholar
  39. Goustard, M., 1948, Inhibition de la photonégativité par le dressage, chez Blattella, Compt. Rend. Acad. Sci. (Paris), 227, 785–786.Google Scholar
  40. Hershberger, W. A., and Smith, M. P., 1967, Conditioning in Drosophila melanogaster, Anim. Behav., 15, 259–262.PubMedGoogle Scholar
  41. Hoagland, H., 1931, A study of the physiology of learning in ants, J. Gen. Psychol., 5, 21–41.Google Scholar
  42. Hollis, J. H., 1963, Habituatory response decrement in pupae of Tenebrio molitor, Anim. Behav., 11, 161–163.Google Scholar
  43. Horn, G., and Rowell, C. H. F., 1968, Medium and long-term changes in the behaviour of visual neurones in the tritocerebrum of locusts, J. Exptl. Biol., 49, 143–169.Google Scholar
  44. Horridge, G. A., 1962a, Learning of leg position by headless insects, Nature (Lond.), 193, 697–698.Google Scholar
  45. Horridge, G. A., 1962b, Learning of leg position by the ventral nerve cord in headless insects, Pro. Roy. Soc. (Lond.), BI57, 33–52.Google Scholar
  46. Horridge, G. A., Sholes, J. H., Shaw, S., and Tunstall, J., 1965, Extracellular recordings from single neurons in the optic lobe and brain of the locust, in “The Physiology of the Insect Central Nervous System” (J. E. Treherne and J. W. L. Beament, eds.), pp. 165–202, Academic Press, New York.Google Scholar
  47. Hoyle, G., 1965, Neurophysiological studies on “learning” in headless insects, in “The Physiology of the Insect Central Nervous System” (J. E. Treherne and J. W. L. Beament, eds.), pp. 203–232, Academic Press, New York.Google Scholar
  48. Hoyle, G., 1970, Cellular mechanisms underlying behavior—Neuroethology, in “Advances in Insect Physiology” (J. W. L. Beament, J. E. Treherne, and V. B. Wigglesworth, eds.), Vol. 7, pp. 394–444, Academic Press, London.Google Scholar
  49. Hullo, A., 1948, Rôle des tendances motrices et des données sensorielles dans l’apprentissage du labyrinthe par les blattes (Blattella germanica), Behaviour, 1, 297–310.Google Scholar
  50. Hunter, W. S., 1932, The effect of inactivity produced by cold upon learning and retention in the cockroach, Blattella germanica, J. Genet. Psychol., 41, 253–266.Google Scholar
  51. Imms, A. D., 1957, “A General Textbook of Entomology,” 9th ed., Methuen, London.Google Scholar
  52. Kandel, E., Castellucci, V., Pinsker, H., and Kupfermann, I., 1970, The role of synaptic plasticity in the short-term modification of behaviour, in “Short-Term Changes in Neural Activity and Behaviour” (G. Horn and R. A. Hinde, eds.), pp. 281–322, Cambridge University Press, Cambridge.Google Scholar
  53. Kerkut, G. A., Oliver, G., Rick, J. T., and Walker, R. J., 1970, Biochemical changes during learning in an insect ganglion, Nature (Lond.), 227, 722–723.Google Scholar
  54. Kimble, G. A., 1961, “Hilgard and Marquis’ Conditioning and Learning,” 2nd ed., Appleton-Century-Crofts, New Yrok.Google Scholar
  55. Lanham, U., 1964, “The Insects,” Columbia University Press, New York.Google Scholar
  56. Le Bigot, L., 1952, Réminiscence au cour d’un apprentissage moteur en fonction de la répétition de l’exercise chez Blattella germanica, Rev. Sci., pp. 254-258.Google Scholar
  57. Le Bigot, L., 1954, Influence des sanctions sur l’acquisition et la retention chez Blattella germanica, J. Psychol. Norm. Pathol., 51, 327–335.Google Scholar
  58. Lecompte, J., 1948, Recherches sur les faiteurs de la motivation chez Blattella germanica, Bull. Soc. Zool. France, 83, 215–220.Google Scholar
  59. Longo, V., 1964, Probability learning and habit reversal in the cockroach, Am. J. Psychol., 77, 29–41.PubMedGoogle Scholar
  60. Longo, V., 1970, A runway for the cockroach, Behav. Res. Methods instrumentation, 2, 118–119.Google Scholar
  61. Manton, S. M., 1964, Mandibular mechanisms and the evolution of arthropods, Phil. Trans. Roy. Soc. (Lond.), 247, 5–183.Google Scholar
  62. Minami, H., and Dallenbach, K. M., 1946, The effect of activity upon learning and retention in the cockroach, Periplaneta americana, Am. J. Psychol., 59, 1–5PubMedGoogle Scholar
  63. Mowrer, O. H., 1947, On the dual nature of learning—A re-interpretation of “conditioning” and “problem-solving,” Harvard Educ. Rev., 17, 102–148.Google Scholar
  64. Murphy, R. K., 1967, Proprioception and learning of leg position in cockroaches, Unpublished masters thesis, cited by Eisenstein (1971).Google Scholar
  65. Murphy, R. M., 1967, Instrumental conditioning of the fruit fly, Drosophila melanogaster, Anim. Behav., 15, 153–161.Google Scholar
  66. Murphy, R. M., 1969, Spatial discrimination performance of Drosophila melanogaster: Some controlled and uncontrolled correlates, Anim. Behav., 17, 43–46.Google Scholar
  67. Nelson, M. C., 1971, Classical conditioning in the blowfly (Phormia regina): Associative and excitatory factors, J. Comp. Physiol. Psychol., 77, 353–368.PubMedGoogle Scholar
  68. Niklaus, R., 1965, Die Erregung einzelner Fadenhaare von Periplaneta americana in Abhängikeit von der Grösse und Richtung der Anstenkung, Z. Vergl. Physiol., 50, 331–362.Google Scholar
  69. Plath, O. E., 1924, Do anesthetized bees lose their memory? Am. Naturalist, 58, 162–166.Google Scholar
  70. Pritchatt, D., 1968, Avoidance of electric shock by the cockroach, Periplaneta americana, Anim. Behav., 16, 178–185.Google Scholar
  71. Pumphrey, R. J., and Rawdon-Smith, A. F., 1936, Synchronized action potentials in the cercal nerve cord of the cockroach (Periplaneta americana) in response to auditory stimuli, J. Physiol., 87, 4p–5p.Google Scholar
  72. Pumphrey, R. J., and Rawdon-Smith, A. F., 1937, Synaptic transmission of nervous impulses through the last abdominal ganglion of the cockroach, Proc. Roy. Soc. (Lond.), BI22, 106–118.Google Scholar
  73. Rabaud, E., 1926, Acquisition des habitudes et repères sensoriels chez les guepes, Bull. Sci. France Belg., 60, 313–333.Google Scholar
  74. Razran, G. A., 1971, “Mind in Evolution: An East-West Synthesis,” Houghton-Mifflin, Boston.Google Scholar
  75. Ross, H. H., 1965, “A Textbook of Entomology,” 3rd ed., Wiley, New York.Google Scholar
  76. Routtenberg, A., Alloway, T. M., and Hill, W, F., 1968, Reply to Deutsch, Science, 160, 1024.Google Scholar
  77. Rowell, C. H. F., 1970, Incremental and decremental processes in the insect central nervous system, in “Short-Term Changes in Neural Activity and Behaviour” (G. Horn and R. A. Hinde, eds.), pp. 237–280, Cambridge University Press, Cambridge.Google Scholar
  78. Rowell, C. H. F., and Horn, G., 1968, Dishabituation and arousal in the response of single nerve cells in an insect brain, J. Exptl. Biol., 49, 171–183.Google Scholar
  79. Schneirla, T. C., 1929, Learning and orientation in ants, Comp. Psychol. Monogr., 6, 4.Google Scholar
  80. Schneirla, T. C., 1933, Motivation and efficiency in ant learning, J. Comp. Psychol., 15, 243–266.Google Scholar
  81. Schneirla, T. C., 1934, The process and mechanism of ant learning: The combination-problem and the successive-presentation problem, J. Comp. Psychol., 17, 303–328.Google Scholar
  82. Schneirla, T. C., 1941, Studies on the nature of ant learning: I. The characteristics of a distinctive initial period of generalized learning. J. Comp. Psychol., 32, 41–82.Google Scholar
  83. Schneirla, T. C., 1943, The nature of ant learning: II. The intermediate stage of segmental maze adjustment, J. Comp. Psychol., 34, 149–176.Google Scholar
  84. Schneirla, T. C., 1953, Modifiability in insect behavior, in “Insect Physiology” (K. D. Roeder, ed.), pp. 723–747, Wiley, New York.Google Scholar
  85. Schneirla, T. C., 1960, L’apprentissage et la question du Conflit chez la fourni—comparaison avec le rat, J. Psychol., 57, 11–44.Google Scholar
  86. Schneirla, T. C., 1962, Psychological comparison of insect and mammal, Psychol. Beitrage, 6, 509–520.Google Scholar
  87. Shepard, J., 1911, Some results in comparative psychology, Psychol. Bull., 8, 41–42.Google Scholar
  88. Smith, D. S., and Treherne, J. E., 1963, Functional aspects of the organization of the insect nervous system, in “Advances in Insect Physiology” (J. W. L. Beament, J. E. Treherne, and V. B. Wigglesworth, eds.), Vol. 1, pp. 401–484, Academic Press, London.Google Scholar
  89. Snodgrass, R. E., 1938, Evolution of Annelida, Onychophora, and Arthropoda, Smithsonian Misc. Coll., 97, 1–159.Google Scholar
  90. Solomon, R. L., and Wynne, L. C., 1954, Traumatic avoidance learning: The principles of anxiety conservation and partial irreversibility, Psychol. Rev., 61, 353–385.PubMedGoogle Scholar
  91. Szymanski, J. S., 1912, Modification of the innate behavior of cockroaches, J. Anim. Behav., 2, 81–90.Google Scholar
  92. Thorpe, W. H., 1939a, Further studies on olfactory conditioning in a parasitic insect. The nature of the conditioning process, Proc. Roy. Soc. (Lond.), B126, 379–397.Google Scholar
  93. Thorpe, W. H., 1939b, Further studies of pre-imaginal olfactory conditioning in insects, Proc. Roy. Soc. (Lond.), B127, 424–433.Google Scholar
  94. Thorpe, W. H., 1943, Types of learning in insects and other arthropods, Brit. J. Psychol., 33, 220–234; 34, 20-31, 66-76.Google Scholar
  95. Thorpe, W. H., and Jones, F. G. W., 1937, Olfactory conditioning and its relation to the problem of host selection, Proc. Roy. Soc. (Lond.), B124, 56–81.Google Scholar
  96. Tiegs, O. W., and Manton, S. M., 1958, The evolution of Arthropoda, Biol. Rev., 33, 255–332.Google Scholar
  97. Turner, C. H., 1912, An experimental investigation of an apparent reversal of responses to light of the roach (Periplaneta orientalis L.), Biol. Bull., 23, 371–386.Google Scholar
  98. Turner, C. H., 1913, Behavior of the common roach (Periplaneta orientalis L.) on an open maze, Biol. Bull., 25, 348–365.Google Scholar
  99. van der Heyde, H. C., 1920, Quelques observations sur la psychologie des fournis, Arch. Néerl. Physiol., 4, 259–282.Google Scholar
  100. Verlaine, L., 1924, L’instinct et l’intelligence chez les hymenoptères: III. La reconnaissance du nid et l’éducabilité de l’odorate chez la Vespa germanica Fab., Ann. Soc. Roy. Entomol. Belg., 15, 67–117.Google Scholar
  101. Verlaine, L., 1925, L’instinct et l’intelligence chez les hymenoptères: V. La traversée d’un labyrinthe par des guèpes et des bourdons (Vespa germanica Linn., V. crabro Linn., Bombus terrestris Linn., et B. sylvarum Linn.), Ann. Soc. Roy. Zool. Belg., 56, 33–98.Google Scholar
  102. Verlaine, L., 1927, L’instinct et l’intelligence chez les hymenoptères: VII. L’abstraction, Bull. Ann. Soc. Entomol. Belg., 58, 59–88.Google Scholar
  103. von Borell du Vernay, W., 1942, Assozionsbildung und Sensibilisierung bei Tenebrio molitor L., Z. Vergl. Physiol., 30, 84–116.Google Scholar
  104. Vowles, D. M., 1964, Olfactory learning and brain lesions in the wood ant (Formica rufa), J. Comp. Physiol. Psychol., 58, 105–111.PubMedGoogle Scholar
  105. Vowles, D. M., 1965, Maze learning and visual discrimination in the wood ant (Formica rufa), Brit. J. Psychol., 56, 15–31.PubMedGoogle Scholar
  106. Walrath, L. C., 1970, Retention and interference in the beetle, Tenebrio molitor, Psychon. Sci., 18, 267–268.Google Scholar
  107. Warden, C. J., Jenkins, T. N., and Warner, L., 1941, “Comparative Psychology: A Comprehensive Treatment,” Vol. II: “Plants and Invertebrates,” Ronald Press, New York.Google Scholar
  108. Weiss, B. A., and Schneirla, T. C., 1967, Inter-situational transfer in the ant Formica schaufussi as tested in a two-phase single choice point maze, Behaviour, 28, 269–279.PubMedGoogle Scholar
  109. Wheeler, W. M., 1928, “The Social Insects,” Harcourt, Brace, New York.Google Scholar
  110. Zajonc, R. B., Heingartner, A., and Herman, E. M., 1969, Social enhancement and impairment of performance in the cockroach, J. Personal. Soc. Psychol., 13, 83–92.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Thomas M. Alloway
    • 1
  1. 1.Erindale CollegeUniversity of TorontoMississaugaCanada

Personalised recommendations