Advertisement

Learning in Crustacea

  • Franklin B. Krasne

Abstract

The Crustacea have been called the “water-breathing insects of the sea” (Schmitt, 1965). Although they have invaded both freshwater and terrestrial habitats, this description gives a reasonable intuitive feeling for many of the general behavioral and morphological characteristics of the class.

Keywords

Hermit Crab Filter Feeder Fiddler Crab Spiny Lobster Swimming Crab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agar, W. E., 1927, The regulation of behavior in water-mites and some other arthropods, J. Comp. Psychol., 7, 39–74.Google Scholar
  2. Allee, W. C., and Douglis, M. B., 1945, A dominance order in the hermit crab, Pagurus longicarpus Say, Ecology, 26, 411–412.Google Scholar
  3. Amsel, A., 1958, The role of frustrative non-reward in non-continuous reward situations, Psychol. Bull., 55, 102–119.PubMedGoogle Scholar
  4. Appellöf, A., 1909, Untersuchungen über den Hommer, Bergens Museums Shrifter (N.S.), 1, 2–78.Google Scholar
  5. Applewhite, P. B., and Morowitz, H. J., 1966, The micrometazoa as model systems for studying the physiology of memory, Yale J. Biol. Med., 39, 90–105.PubMedGoogle Scholar
  6. Arechiga, H., and Wiersma, C. A. G., 1969, Circadian rhythms of responsiveness in crayfish visual units, J. Neurobiol., 1, 71–85.PubMedGoogle Scholar
  7. Atwood, H. L., 1967, Crustacean neuromuscular mechanisms, Am. Zoologist, 7, 527–551.Google Scholar
  8. Atwood, H. L., and Bittner, G. D., 1971, Matching of excitatory and inhibitory inputs to crustacean muscle fibers, J. Neurophysiol., 34, 157–170.PubMedGoogle Scholar
  9. Atwood, H. L., and Wiersma, C. A. G., 1967, Command interneurons in the crayfish central nervous system, J. Exptl. Biol., 42, 249–261.Google Scholar
  10. Bainbridge, R., 1961, Migrations, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. II, pp. 431–455, Academic Press, New York.Google Scholar
  11. Barnes, R. D., 1968, “Invertebrate Zoology,” Saunders, Philadelphia.Google Scholar
  12. Barnwell, F. H., 1963, Observations on daily and tidal rhythms in some fiddler crabs from equatorial Brazil, Biol. Bull., 125, 399–415.Google Scholar
  13. Barnwell, F. H., 1968, The role of rhythmic systems in the adaptation of fiddler crabs in the intertidal zone, Am. Zoologist, 8, 569–583.Google Scholar
  14. Bethe, A., 1897, Vergleichende Untersuchungen über die Funktionen des Centralnervensystems der Arthropoden, Arch. Ges. Physiol. Pflügers, 68, 449–545.Google Scholar
  15. Bethe, A., 1898, Das Centralnervensystem von Carcinus maenas. II, Arch. Mikroskop. Anat., 51, 382–452.Google Scholar
  16. Birks, R. I., and Cohen, M. W., 1968, The action of sodium pump inhibitors on neuromuscular transmission, Proc. Roy. Soc. Ser. B, 170, 381–399.Google Scholar
  17. Bitterman, M. E., 1965, Phyletic differences in learning, Am. Psychologist, 20, 396–410.Google Scholar
  18. Blees, G. H. J., 1919, Phototropisme et expérience chez la Daphnie, Arch. Nierl. Physiol., 3, 279–306.Google Scholar
  19. Bock, A., 1942, Über das Lernvermögen bei Asseln, Z. Vergl. Physiol., 29, 595–637.Google Scholar
  20. Bonner, J. F., 1965, “The Molecular Biology of Development,” Oxford University Press, New York.Google Scholar
  21. Borradaile, L. A., Potts, F. A., Eastham, L. E. S., Saunders, J. T., and Kerkut, G. A., 1958, “The Invertebrata,” Cambridge University Press, Cambridge.Google Scholar
  22. Bovbjerg, R. V., 1953, Dominance order in the crayfish, Orconectes virilis (Hagen), Physiol. Zool., 26, 173–178.Google Scholar
  23. Brereton, J. LeG., 1957, The distribution of woodland isopods, Oikos, 8, 85–106.Google Scholar
  24. Brown, F. A., 1961, Physiological rhythms, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. II, pp. 401–430, Academic Press, New York.Google Scholar
  25. Bruner, J., and Kennedy, D., 1970, Habituation: Occurrence at a neuromuscular junction, Science, 169, 92–94.PubMedGoogle Scholar
  26. Bruner, J., and Tauc, L., 1966, Habituation at the synaptic level in Aplysia, Nature, 210, 37.PubMedGoogle Scholar
  27. Buchsbaum, R., and Milne, L. J., 1960, “The Lower Animals: Living Invertebrates of the World,” Doubleday, Garden City, N.Y.Google Scholar
  28. Buerger, A. A., and Fennessy, A., 1971, Long-term alteration of leg position due to shock avoidance by spinal rats, Exptl. Neurol., 30, 195–211.Google Scholar
  29. Bullock, T. H., and Horridge, G. A., 1965, “Structure and Function in the Nervous Systems of Invertebrates,” Freeman, San Francisco.Google Scholar
  30. Capretta, P. J., and Rea, R., 1967, Discrimination reversal learning in the crayfish, Anim. Behav., 15, 6–7.PubMedGoogle Scholar
  31. Carthy, J. D., 1958, “An Introduction to the Behavior of Invertebrates,” Allen and Unwin, London.Google Scholar
  32. Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E. R., 1970, Neuronal mechanisms of habituation and dishabituation of the gill withdrawal reflex in Aplysia, Science, 167, 1745–1748.PubMedGoogle Scholar
  33. Chow, K. L., and Leiman, A. L., The photo-sensitive organs of crayfish and brightness learning, Personal communication and in preparation.Google Scholar
  34. Cohen, M. J., and Jacklet, J. W., 1965, Neurons of insects: RNA changes during injury and regeneration, Science, 148, 1237–1239.PubMedGoogle Scholar
  35. Costa, H. H., 1966, Responses of Gammarus pulex (L.) to modified environment. I. Reactions to toxic substances, Crustaceana, 11, 245–255.Google Scholar
  36. Cowles, R. P., 1908, Habits, reactions, and associations in Ocypoda arenaria, Papers Tortugas Lab. Carnegie Inst. Wash., 2, 1–41.Google Scholar
  37. Crane, J., 1958, Aspects of social behavior in fiddler crabs, with special reference to Uca maracoani (Latreille), Zoologica, 43, 113–130.Google Scholar
  38. Creaser, E. P., and Travis, D., 1950, Evidence of a homing instinct in the Bermuda spiny lobster, Science, 112, 169–170.PubMedGoogle Scholar
  39. Datta, L. G., Milstein, S., and Bitterman, M. E., 1960, Habit reversal in the crab, J. Comp. Physiol. Psychol., 53, 275–278.PubMedGoogle Scholar
  40. Daumer, K., Jander, R., and Waterman, T. H., 1963, Orientation of the ghost-crab Ocypode in polarized light, Z. Vergl. Physiol., 47, 56–76.Google Scholar
  41. Davis, W. J., 1970, Motoneuron morphology and synaptic contacts: Determination by intracellular dye injection, Science, 168, 1358–1360.PubMedGoogle Scholar
  42. Dembrowska, W. S., 1926, Study on habits of the crab Dromia vulgaris M. E., Biol. Bull., 50, 163–178.Google Scholar
  43. Doflein, F., 1910, Lebensgewohnheiten und Anpassungen bei dekapoden Krebsen, in “Festschrift zum 60 Geburtstag Richard Hertwigs,” Vol. 3, pp. 215–292, Fischer, Jena.Google Scholar
  44. Drzewina, A., 1908, Les réactions adaptives des Crabes, Bull. Inst. Gen. Psychol., 8, 235–256.Google Scholar
  45. Drzewina, A., 1910, Création d’associations sensorielles chez les crustacés, Compt. Rend. Soc. Biol. Paris, 68, 573–575.Google Scholar
  46. Dudel, J., and Kuffler, S. W., 1961, Mechanism of facilitation at the crayfish neuromuscular junction, J. Physiol., 155, 530–542.PubMedGoogle Scholar
  47. Edds, M. V., Jr., 1967, Neuronal specificity in neurogenesis, in “The Neurosciences, A Study Program” (G. C. Quarton, T. Melnechuck, and F. O. Schmitt, eds.), pp. 230–240, and Rockefeller University Press, New York.Google Scholar
  48. Eisenstein, E. M., and Mill, P. J., 1965, Role of the optic ganglia in learning in the crayfish Procambarus clarkii (Girard), Anim. Behav., 13, 561–565.PubMedGoogle Scholar
  49. Evoy, W. H., and Kennedy, D., 1967, The central nervous organization underlying control of antagonistic muscles in the crayfish. I. Types of command fibers, J. Exptl. Zool., 165(2), 223–248.Google Scholar
  50. Farel, P. B., Buerger, A. A., 1972, Instrumental conditioning of leg position in chronic spinal frog: Before and after sciatic section, Brain Res., 47, 345–351.PubMedGoogle Scholar
  51. Farel, P. B., and Krasne, F. B., 1972, Maintenance of habituation by infrequent stimulation, Physiol. Behav., 8, 783–785.PubMedGoogle Scholar
  52. Fernandez, H. L., Huneeus, F. C., and Davison, P. F., 1970, Studies on the mechanism of axoplasmic transport in the crayfish cord, J. Neurobiol., 1, 395–409.PubMedGoogle Scholar
  53. Fink, H. K., 1941, Deconditioning of the “fright reflex” in the hermit crab, Pagurus longi-carpus, J. Comp. Psychol., 32, 33–39.Google Scholar
  54. Fraenkel, G. S., and Gunn, D. L., 1961, “The Orientation of Animals,” Dover, New York.Google Scholar
  55. Galeano, C., and Chow, K. L., 1970, Response of caudal photoreceptor of crayfish to continuous and intermittent photic stimulation, Can. J. Physiol. Pharmacol., 49, 699–706.Google Scholar
  56. Garcia, J., McGowan, B. K., Ervin, F. R., and Koelling, R. A., 1968, Cues: Their relative effectiveness as a function of the reinforcer, Science, 160, 794–795.PubMedGoogle Scholar
  57. Gilhousen, H. C., 1927, The use of the vision and of the antennae in the learning of crayfish, Univ. Calif. (Berkeley) Publ. Physiol., 7, 73–89.Google Scholar
  58. Gregory, R. L., 1966, “Eye and Brain,” McGraw-Hill, New York.Google Scholar
  59. Gwilliam, G. F., 1966, The mechanism of the shadow reflex in Cirripedia. II. Photoreceptor cell response, second-order responses and motor cell output, Biol. Bull., 131, 244–256.Google Scholar
  60. Harker, J. E., 1964, “The Physiology of Diurnal Rhythms,” Cambridge University Press, Cambridge.Google Scholar
  61. Harless, M. E., 1967, Successive reversals of a position response in isopods, Psychon. Sci., 9, 123–124.Google Scholar
  62. Harris, J. E., 1963, The role of endogenous rhythms in vertical migration, J. Marine Biol. Ass. G.B., 43, 153–166.Google Scholar
  63. Hazlett, B. A., 1966, Temporary alteration of the behavioral repertoire of a hermit crab, Nature, 210, 1169–1170.PubMedGoogle Scholar
  64. Hazlett, B. A., 1969, “Individual” recognition and agonistic behavior in Pagurus bernhardus, Nature, 222, 268–269.Google Scholar
  65. Hazlett, B. A., 1971, Influence of rearing conditions on initial shell entering behavior of a hermit crab (Decapoda Paguridea), Crustaceana, 20(2), 167–170.Google Scholar
  66. Hazlett, B. A., and Provenzano, A. J., 1965, Development of behavior in laboratory reared hermit crabs, Bull. Marine Sci., 15, 616–633.Google Scholar
  67. Held, R., and Hein, A., 1963, Movement-produced stimulation in the development of visually guided behavior, J. Comp. Physiol. Psychol., 56, 872–876.PubMedGoogle Scholar
  68. Herrnkind, W. F., 1968, Adaptive visually-directed orientation in Uca pugilator, Am. Zoologist, 8, 583–598.Google Scholar
  69. Hertz, M., 1932, Verhalten des Einsiedlerkrebses Clibanarius misanthropicus gegenüber verschiedener Gehäuseformen, Z. Vergl. Physiol., 18, 597–621.Google Scholar
  70. Hertz, M., 1933, Über figurale Intensitäten und Qualitäten in der optischen Wahrenehmung der Biene, Biol. Zbl., 53, 10–40.Google Scholar
  71. Hertz, M., 1934, Zur Physiologie des Formen und Bewegungssehens. III. Figurale Unterscheidung und reziproke Dressuren bei der Biene, Z. Vergl. Physiol., 21, 604–615.Google Scholar
  72. Hodos, W., 1970, Evolutionary interpretation of neural and behavioral studies of living vertebrates, in “The Neurosciences. Second Study Program” (G. C. Quarton, T. Melnechuck, and G. Adelman, eds.), pp. 26–39, Rockefeller University Press, New York.Google Scholar
  73. Horn, A. L. D., and Horn, G., 1969, Modification of leg flexion in response to repeated stimulation in a spinal amphibian (Xenopus mullerei), Anim. Behav., 17, 618–623.PubMedGoogle Scholar
  74. Horn, G., 1967, Neuronal mechanisms of habituation, Nature, 215, 707–711.PubMedGoogle Scholar
  75. Horridge, G. A., 1966a, Optokinetic memory in the crab, Carcinus, J. Exptl. Biol., 44, 233–245.Google Scholar
  76. Horridge, G. A., 1966b, Optokinetic responses of the crab, Carcinus, to a single moving light, J. Exptl. Biol., 44, 263–214.Google Scholar
  77. Horridge, G. A., 1966c, Direct response of the crab, Carcinus, to the movement of the sun, J. Exptl. Biol., 44, 275–283.Google Scholar
  78. Horridge, G. A., 1968, “Interneurons,” Freeman, San Francisco.Google Scholar
  79. Hoy, R., Bittner, G., and Kennedy, D., 1967, Regeneration in crustacean motoneurons: Evidence for axonal fusion, Science, 156, 251–252.PubMedGoogle Scholar
  80. Hughes, G. M., 1965, Neuronal pathways in the insect central nervous system, in “The Physiology of the Insect Central Nervous System” (J. E. Treherne and J. W. L. Beament, eds.), pp. 79–112, Academic Press, New York.Google Scholar
  81. Hughes, R. N., 1966, Some observations of correcting behavior in woodlice (Porcellio scaber), Anim. Behav., 14, 319.Google Scholar
  82. Iwahara, S., 1963, Inhibition vs. thigmotropism vs. centrifugal swing as determinates of the initial turn alternation phenomenon in Armadillidium vulgare, Ann. Anim. Psychol. Tokyo, 13, 1–15.Google Scholar
  83. Jacobson, M., 1970, Development, specification and diversification of neuronal connections, in “The Neurosciences. Second Study Program” (G. C. Quarton, T. Melnechuk, and G. Adelman, eds.), pp. 116–129, Rockefeller University Press, New York.Google Scholar
  84. Katz, B., 1971, Quantal mechanism of neural transmitter release, Science, 173, 123–126.PubMedGoogle Scholar
  85. Kennedy, D., and Preston, J. B., 1963, Post activation changes in excitability and spontaneous firing of crustacean interneurons, Comp. Biochem. Physiol., 8, 173–179.Google Scholar
  86. Kennedy, D., Evoy, W. H., and Fields, H. L., 1966a, The unit basis of some crustacean reflexes, in “Nervous and Hormonal Mechanisms of Integration,” Vol. 20, pp. 75–109, Symp. Soc. Exptl. Biol., Academic Press, New York.Google Scholar
  87. Kennedy, D., Evoy, W. H., and Hanawalt, J. F., 1966b, Release of coordinated behavior in crayfish by single central neurons, Science, 154, 917.PubMedGoogle Scholar
  88. Kennedy, D., Selverston, A. I., and Remler, M. P., 1969, Analysis of restricted neural networks, Science, 164, 1488–1496.PubMedGoogle Scholar
  89. Krasne, F. B., 1969, Excitation and habituation of the crayfish excape reflex: The depolarizing response in lateral giant fibers of the isolated abdomen, J. Exptl. Biol., 50, 29–46.Google Scholar
  90. Krasne, F. B., and Roberts, A. M., 1967, Habituation of the crayfish escape response during release from inhibition induced by picrotoxin, Nature, 215, 769–770.PubMedGoogle Scholar
  91. Krasne, F. B., and Woodsmall, K. S., 1969, Waning of the crayfish escape response as a result of repeated stimulation, Anim. Behav., 17, 416–424.PubMedGoogle Scholar
  92. Kühl, H., 1933, Die Fortbewegung der Schwimmkrabben mit Bezug auf die Plastizität des Nervensystems, Z. Vergl. Physiol., 19, 489–521.Google Scholar
  93. Kupfermann, I., 1966, Turn alternation in the pill bug (Armadillidium vulgare), Anim. Behav., 14, 68–72.PubMedGoogle Scholar
  94. Lagerspetz, K. Y. H., and Kivivuori, L., 1970, The rate and retention of the habituation of the shadow reflex in Balanus improvisus (Cirripedia), Anim. Behav., 18, 616–620.PubMedGoogle Scholar
  95. Larimer, J., Eggleston, A., Masukawa, L., and Kennedy, D., 1971, The different connections and motor outputs of lateral and medial giant fibers in the crayfish, J. Exptl. Biol., 54, 391–402.Google Scholar
  96. Lindauer, M., 1961, “Communication Among Social Bees,” Havard University Press, Cambridge, Mass.Google Scholar
  97. Lindberg, R. G., 1955, Growth, population dynamics, and field behavior in the spiny lobster Panulirus interrupts (Randall), Univ. Calif. Publ. Zool., 59, 157–247.Google Scholar
  98. Lowe, M. E., 1956, Dominance-subordinance relationships in Cambarellus shufeldtii, Tulane Stud. Zool., 4, 139–170.Google Scholar
  99. Luther, W., 1930, Versuche über die Chemorezeptoren der Brachyuran, Z. Vergl. Physiol., 12, 177–205.Google Scholar
  100. MacGinitie, G. E., and MacGinitie, N., 1949, “Natural History of Marine Animals,” McGraw-Hill, New York.Google Scholar
  101. Maynard, D. M., 1955, Activity in a crustacean ganglion. II. Pattern and interaction in burst formation, Biol. Bull., 109, 420–436.Google Scholar
  102. Mikhailoff, S., 1920, Expérience réflexologique—L’activité neuro-psychique (formation des réflexes associés) est-elle possible sans l’écorce cérébrale? (Première communication préliminaire). Analyse de l’état actuel de la question et expériences nouvelles sur Pagurus striatus, Bull. Inst. Océanograph. Monaco, No. 375.Google Scholar
  103. Mikhailoff, S., 1922, Expérience réflexologique: Expériences nouvelles sur Pagurus striatus Bull. Inst. Océanograph. Monaco, No. 418.Google Scholar
  104. Mikhailoff, S., 1923, Expérience réflexologique: Expériences nouvelles sur Pagurus striatus, Leander xiphiaas et treillianus, Bull, Inst. Océanograph. Monaco, No. 422.Google Scholar
  105. Milne, L. J., and Milne, M., 1961, Scanning movements of the stalked compound eyes in crustaceans of the order Stomatopoda, in “Progress in Photobiology” (B. C. Christensen and B. Buchmann, eds.) pp. 422-426, Proc. Third Internat. Congr. Photobiol., Copenhagen, 1960.Google Scholar
  106. Morrow, J. E., 1966, Learning in an invertebrate with two types of negative reinforcement, Psychon. Sci., 5, 131.Google Scholar
  107. Morrow, J., and Smithson, B., 1968, Learning in an invertebrate with a positive reinforcement of water, Psychol. Rep., 22, 1203.PubMedGoogle Scholar
  108. Morrow, J. E., and Smithson, B. L., 1969, Learning sets in an invertebrate, Science, 164, 850–851.PubMedGoogle Scholar
  109. Otsuka, M., Kravitz, E. A., and Potter, D. D., 1967, Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate, J. Neurophysiol., 30, 725–752.PubMedGoogle Scholar
  110. Pardi, L., 1960, Innate components in the solar orientation of littoral amphipods, Cold Spring Harbor Symp. Quant. Biol., 25, 395–341.PubMedGoogle Scholar
  111. Pardi, L., and Papi, F., 1961, Kinetic and tactic responses, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. II, pp. 365–399, Academic Press, New York.Google Scholar
  112. Pieron, H., 1910, “L’Evolution de la Memoire,” Flammarion, Paris.Google Scholar
  113. Pittendrigh, C. S., 1960, Circadian rhythms and the circadian organization of living systems, Cold Spring Harbor Symp. Quant. Biol., 25, 159–184.PubMedGoogle Scholar
  114. Reese, E. S., 1963, The behavioral mechanisms underlying shell selection by hermit crabs, Behaviour, 21, 78–126.Google Scholar
  115. Remler, M., Selverston, A., and Kennedy, D., 1968, Lateral giant fibers of crayfish: Location of somata by dye injection, Science, 162, 281–283.PubMedGoogle Scholar
  116. Roberts, A., 1968, Recurrent inhibition in the giant-fibre system of the crayfish and its effect on the excitability of the escape response, J. Exptl. Biol., 48, 545–567.Google Scholar
  117. Sachs, L. B., Klopfer, F. D., and Morrow, J. E., 1965, Reactive inhibition in the sow bug, Psychol. Rep., 17, 739–743.PubMedGoogle Scholar
  118. Schmitt, W. L., 1965, “Crustaceans,” University of Michigan Press, Ann Arbor.Google Scholar
  119. Schöne, H., 1954, Statocystenfunktion und statische Lageorientierung bei dekapoden Krebsen, Z. Vergl. Physiol., 36, 241–260.Google Scholar
  120. Schöne, H., 1961a, Complex behavior, in The Physiology of Crustacea (T. H. Waterman, ed.), Vol. II, pp. 465–520, Academic Press, New York.Google Scholar
  121. Schöne, H., 1961b, Learning in the spiny lobster Panulirus argus, Biol. Bull., 121, 354–365.Google Scholar
  122. Schöne, H., 1964, Release and orientation of behavior and the role of learning as demonstrated in Crustacea, in “Learning and Associated Phenomena in Invertebrates” (W. H. Thorpe and D. Davenport, eds.), Anim. Behav. Suppl., 1, 135–143.Google Scholar
  123. Schwartz, B., and Safir, S. R., 1915, Habit formation in the fiddler crab, J. Anim. Behav., 5, 226–239.Google Scholar
  124. Seabrook, W. D., and Nesbitt, H. H. J., 1966, The morphology and structure of the brain of Orconectes virilis (Hagen) (Crustacea, Decapoda), Can. J. Zool., 44, 1–21.PubMedGoogle Scholar
  125. Sherman, R. G., and Atwood, H. L., 1971, Synaptic facilitation: Long-term neuromuscular facilitation in crustaceans, Science, 171, 1248–1250.PubMedGoogle Scholar
  126. Spaulding, E. G., 1904, An establishment of association in hermit crabs, Eupagurus longicarpus, J. Comp. Neurol. Psychol., 14, 49–61.Google Scholar
  127. Stretton, A. O. W., and Kravitz, E. A., 1968, Neuronal geometry: Determination with a technique of intracellular dye injection, Science, 162, 132–134.PubMedGoogle Scholar
  128. Takeda, K., and Kennedy, D., 1964, Soma potentials and modes of activation of crayfish motoneurons, J. Cell. Comp. Physiol., 64, 165–181.Google Scholar
  129. Takeda, K., and Kennedy, D., 1965, The mechanism of discharge pattern formation in crayfish interneurons, J. Gen. Physiol., 48, 435–453.PubMedGoogle Scholar
  130. Taylor, R. C., 1970, Environmental factors which control the sensitivity of a single crayfish interneuron, Comp. Biochem. Physiol., 33, 911–921.Google Scholar
  131. Ten Cate-Kazejewa, B., 1934, Quelques observations sur les Bernards l’Ermite (Pagurus arrosor), Arch. Neerl. Physiol. Ser. 3c, 19, 502–508.Google Scholar
  132. Thompson, R., 1957, Successive reversal of a position habit in an invertebrate, Science, 126, 163–164.PubMedGoogle Scholar
  133. Thorpe, W. H., 1956, “Learning and Instinct in Animals,” Harvard University Press, Cambridge, Mass.Google Scholar
  134. van der Heyde, A., 1920, Über die Lernfähigheit der Strandkrabbe Carcinus maenas, Biol. Zentr., 40, 503–514.Google Scholar
  135. Volz, P., 1938, Studien über das Knallen der Alpheiden, nach Untersuchungen an Ahpheus dentipes Guérin und Synalpheus laeuimanus (Heller), Z. Morphol. Ökol. Tiere, 34.Google Scholar
  136. von Buddenbrock, W., 1953, Nervenphysiologie, in “Vergleichende Physiologie,” Vol. 2, Birkhauser, Basel.Google Scholar
  137. von Frisch, K., 1953, “The Dancing Bees,” Harcourt, Brace, New York.Google Scholar
  138. Warren, J. M., 1965, Primate learning in comparative perspective, in “Behavior of Nonhuman Primates” (A. M. Schrier, H. F. Harlow, and F. Stollnitz, eds.), Vol. I, pp. 249–281, Academic Press, New York.Google Scholar
  139. Watanabe, M., and Iwata, K. S., 1956, Alternative turning response of Armadillidium vulgare, Ann. Anim. Psychol. Tokyo, 6, 75–82.Google Scholar
  140. Waterman, T. H., and Chace, F. A., Jr., 1960, General crustacean biology, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. I, pp. 1–33, Academic Press, New York.Google Scholar
  141. Waterman, T. H., Wiersma, C. A. G., and Bush, B. M. H., 1964, Afferent visual responses in the optic nerve of the crab, Podophthalamus, J. Cell. Comp. Physiol., 63, 135–155.Google Scholar
  142. Wiersma, C. A. G., 1947, Giant nerve fiber systems of the crayfish. A contribution to comparative physiology of synapse, J. Neurophysiol., 10, 23–38.PubMedGoogle Scholar
  143. Wiersma, C. A. G., 1957, On the number of nerve cells in a crustacean central nervous system, Acta Physiol. Pharm. Neerl., 6, 135–142.Google Scholar
  144. Wiersma, C. A. G., 1961, Reflexes and the central nervous system, in “The Physiology of Crustacea” (T. H. Waterman, ed.), Vol. II, pp. 241–279, Academic Press, New York.Google Scholar
  145. Wiersma, C. A. G., 1970, Reactivity changes in crustacean neural systems, in “Short-Term Changes in Neural Activity and behavior” (G. Horn and R. A. Hinde, eds.), pp. 211–236, Cambridge University Press., Cambridge.Google Scholar
  146. Wilson, D. M., and Davis, W. J., 1965, Nerve impulse patterns and reflex control in the motor system of the crayfish claw, J. Exptl. Biol., 43, 193–210.Google Scholar
  147. Wilson, D. P., 1949, Notes from the Plymouth Aquarium, J. Marine Biol. Ass. U.K., 29, 345–351.Google Scholar
  148. Wine, J. J., 1971, Hyperreflexia in the crayfish abdomen following denervation: Evidence for supersensitivity in an invertebrate central nervous system, Ph. D. dissertation, University of California, Los Angeles.Google Scholar
  149. Wine, J. J., 1973, Invertebrate central neurons: Orthograde degeneration and retrograde changes after axotomy, Exptl. Neurol., in press.Google Scholar
  150. Wine, J. J., and Krasne, F. B., 1969, Independence of inhibition and habituation in the crayfish lateral giant fiber escape reflex, Proc. Seventy-seventh Ann. Convention A.P.A., pp. 237-238.Google Scholar
  151. Wine, J. J., and Krasne, F. B., 1972, The organization of escape behavior in the crayfish, J. Exptl. Biol., 56, 1–18.Google Scholar
  152. Woodworth, R. S., and Schlosberg, H., 1956, “Experimental Psychology,” Henry Holland, New York.Google Scholar
  153. Wrede, W. L., 1929, Versuche über die Chemoreception bei Eupagurus bernhardus, Tijdschr. Ned. Dierk. Ver Leiden., 3, 109–112.Google Scholar
  154. Yerkes, R., 1902, Habit formation in the green crab, Biol. Bull., 3, 241–244.Google Scholar
  155. Yerkes, R. M., and Huggins, G. E., 1903, Habit formation in the crawfish, Cambarus affinis, Harvard Psychol. Stud., 1, 565–577.Google Scholar
  156. Zucker, R. S., 1972, Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber, II. Physiological mechanisms underlying behavioral habituation, III. Electrical junctions and dendritic spikes in fast flexor motoneurons, J. Neurophysiol., 35, 599–651.PubMedGoogle Scholar
  157. Zucker, R. S., Kennedy, D., and Selverston, A. I., 1971, Neuronal circuit mediating escape responses in crayfish, Science, 173, 645–650.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Franklin B. Krasne
    • 1
  1. 1.Department of PsychologyUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations