Advertisement

Behavior Modification in Annelids

  • James A. Dyal

Abstract

While worms may be movers and moulders of mountains, they have managed to avoid the extended scrutiny of behavioral physiologists and psychologists. Nevertheless, as Bullock has noted, “Annelids offer some of the most promising material for study of learning mechanisms in simple systems . . . their availability, simplicity, phylogenetic position, learning capacity, and tolerance of mutilation suggest that they are well worth new attention” (Bullock and Quarton, 1966, p. 116).

Keywords

Classical Conditioning Spontaneous Alternation Instrumental Conditioning Withdrawal Response Mechanical Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbit, J., 1957. Diurnal cycles and learning in earthworms. Science, 126, 654–655.PubMedGoogle Scholar
  2. Arbit, J., 1961. A failure to confirm “latent learning in earthworms.” Worm Runner’sDigest, 3, 129–134.Google Scholar
  3. Arbit, J., and McLean, J. P., 1959. The spatial gradient of alternation and reactive inhibition in the earthworm. Paper read at the annual meeting of the Illinois Academy of Science, Chicago.Google Scholar
  4. Baldwin, F. M., 1917. Diurnal activity of the earthworm. J. Anim. Behay., 7, 187–190.Google Scholar
  5. Barnes, R. D., 1966. Invertebrate Zoology, Saunders, Philadelphia.Google Scholar
  6. Belenkov, N. Yu., and Chirkov, V. D., 1969. Nonsynaptic (ephatic) factors in the function of cortical neurones. Zh. Vyssh. Nerv. Deyatel. I. P. Pavlova, 19, 1033–1043.Google Scholar
  7. Bharucha-Reid, R. P., 1956. Latent learning in earthworms. Science, 123, 222.PubMedGoogle Scholar
  8. Bharucha-Reid, R. P., 1961. Confirmation or refutation of latent learning in earthworms? Worm Runner’s Digest, 3, 179–183.Google Scholar
  9. Bohn, G., 1902. Contribution à la psychologie des annelides. Bull. Inst. Gen. Psychol., 2, 317–325.Google Scholar
  10. Breland, K., and Breland, M., 1961. The misbehavior of organisms. Am. Psychologist, 16, 681–684.Google Scholar
  11. Bullock, T. H., 1948. Physiological mapping of giant nerve fibres systems in polychaete annelids. Physiol. Comp. Occol., 1, 1–14.Google Scholar
  12. Bullock, T. H., and Horridge, G. A., 1965. Structure and Function in the Nervous Systems of Invertebrates, Freeman, San Francisco.Google Scholar
  13. Bullock, T. H., and Quarton, G. C., 1966. Simple systems for the study of learning mechanisms. Neurosci. Res. Progr. Bull., 4, 105–233.Google Scholar
  14. Caldwell, W. E., and Kailan, H., 1955. An investigation of the role of exteroceptive motivation in the behaviour of the earthworm. J. Psychol., 40, 133–144.Google Scholar
  15. Clark, R. B., 1959a. The neurosecretory system of the supraoesophageal ganglion of Nephtys ( Annelida: Polychaeta). Zool. Jb. (Physiol ), 68, 395–424.Google Scholar
  16. Clark, R. B., 1959. The tubiculous habit and the fighting reactions of the polychaete Nereis pelagica. Anim. Behay., 7, 85–90.Google Scholar
  17. Clark, R. B., 1960. Habituation of the polychaete Nereis to sudden stimuli. I. General properties of the habituation process. Anim. Behay., 8. 82–91.Google Scholar
  18. Clark, R. B., 1960. Habituation of the polychaete Nereis to sudden stimuli. Il. The biological significance of habituation. Anim. Behay., 8, 92–103.Google Scholar
  19. Clark. R. B., I965a. Endocrinology and the reproductive biology of polychaetes. In Barnes, H. (ed.), Oceanography and Marine Biology, an Annual Review, Vol. 3, Allen and Un-win, London, pp. 211–255.Google Scholar
  20. Clark, R. B., 1965. The learning abilities of nereid polychaetes and the role of the supra-oesophageal ganglion. Anim. Behay. Suppl., 1, 89–100.Google Scholar
  21. Clark, R. B., 1965c. The integrative action of a worm’s brain. Symp. Soc. Exptl. Biol., 20, 345–379.Google Scholar
  22. Clark, R. B., 1969. Systematics and phylogeny: Annelida, Echiura and Sipuncula. In Chemical Zoology, Vol. 4, Academic Press, New York.Google Scholar
  23. Copeland, M., 1930. An apparent conditioned response in Nereis virens. J. Comp. Psycho., 10, 339–354.Google Scholar
  24. Copeland, M., and Brown, F. A., Jr., 1934. Modification of behavior in Nereis virens. Biol. Bull. 67, 356–364.Google Scholar
  25. Copeland, M., and Wieman, H. L., 1924. The chemical sense and feeding behaviour of Nereis virens Sars. Biol. Bull. Woods Hole, 157, 231–238.Google Scholar
  26. Coppock, W., and Bitterman, M. E., 1955. Learning in two marine annelids. Am. Psychologist, 10, 501 (Abst.).Google Scholar
  27. Darwin, C., 1898. The Formation of Vegetable Mould Through the Action of Worms: With Observations on Their Habits, D. Appleton and Co., New York.Google Scholar
  28. Datta, L. -E., 1962. Some experiments on learning in the earthworm, Lumbricus terrestris. Am. J. Psycho, 75, 531–553.Google Scholar
  29. Dember, N. D., and Fowler, H., 1958. Spontaneous alternation of behavior. Psychol. Bull., 55, 412–428.PubMedGoogle Scholar
  30. Drees, O., 1952. Untersuchungen über die angeborenen Verhaltensweisen bei Springspinnen (Salticidae). Z. Tierpsychol., 9, 169–207.Google Scholar
  31. Durchon, M., 1962. Neurosecretion and hormonal control of reproduction in Annelida. Gen. Comp. Endocrino, 1, 227–240 (Suppl.).Google Scholar
  32. Dyal, J. A., 1972. Behavior of annelids. University of Waterloo Research Reports in Psychology, Report No. 41, December 15, 1972.Google Scholar
  33. Dyal, J. A., and Hetherington, K., 1968. Habituation in the polychaete, Hesperonoé adventor. Psychon. Sci., 13, 263–264.Google Scholar
  34. Eckert, R., 1963. Electrical interaction of paired ganglion cells in the leech. J. Gen. Psycho, 46, 573–587.Google Scholar
  35. Eikmanns, E. K., 1955. Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L.). Z. Tierpsychol., 12, 229–253.Google Scholar
  36. Evans, S. M., 1963a. The effect of brain extirpation on learning and retention in Nereid polychaetes. Anim. Behay., 11, 172–178.Google Scholar
  37. Evans, S. M., 1963b. Behaviour of the polychaete Nereis in T-mazes. Anim. Behay., 11, 379–392.Google Scholar
  38. Evans, S. M., 1965a. Learning in the polychaete Nereis. Nature, 207, 1420.Google Scholar
  39. Evans, S. M., 1965b. Learning in nereid polychaetes. Thesis, University of Bristol.Google Scholar
  40. Evans, S. M., 1966a. Non-associative avoidance learning in nereid polychaetes. Anim. Behay., 14, 102–106.Google Scholar
  41. Evans, S. M., 19666. Non-associative behavioural modifications in the polychaete Nereis diversicolor. Anim. Behay., 14, 107–112.Google Scholar
  42. Evans, S. M., 1966c. Non-associative behavioural modifications in nereid polychaetes. Nature, 211, 945–948.PubMedGoogle Scholar
  43. Evans, S. M., 1969a. Habituation of the withdrawal response in nereid polychaetes. I. The habituation process in Nereis diversicolor. Biol. Bull., 137, 95–104.Google Scholar
  44. Evans, S. M., 19696. Habituation of the withdrawal response in nereid polychaetes. 2. Rates of habituation in intact and decerebrate worms. Biol. Bull., 137, 105–117.Google Scholar
  45. Fischel, W., 1933. Über bewahrende and wirkende Gedachtnisleistung. Biol. Zbl., 53, 449–471.Google Scholar
  46. Flint, P., 1965. The effect of sensory deprivation on the behaviour of the polychaete Nereis in T-mazes. Anim. Behay., 13, 187–193.Google Scholar
  47. Fraser, C. H. T., 1958. Maze-learning in earthworms. Unpublished master’s thesis, University of Aberdeen.Google Scholar
  48. Gardner, L. E., 1968. Retention and overhabituation of a dual-component response in Lumbricus terrestris sp. J. Comp. Physiol. Psycho, 66, 315–318.Google Scholar
  49. Gee, W., 1913. The behavior of leeches with especial reference to its modifiability. Univ. Calif. Publ. Zool., 11, 197–305.Google Scholar
  50. Golding, D. W., 1965a. Endocrinology and morphogenesis in Nereis diversicolor. Gen. Comp. Endocrino, 5, 681.Google Scholar
  51. Gwilliam, G. F., 1969. Electrical responses to photic stimulation in the eyes and nervous system of nereid polychaetes. Biol. Bull., 136, 385–397.Google Scholar
  52. Hagiwara, S., and Morita, H., 1962. Electrotonic transmission between two nerve cells in a leech. J. Neurophysiol., 25, 721–731.PubMedGoogle Scholar
  53. Hagiwara, S., Morita, H., and Naka, K., 1964. Transmission through distributed synapses between two giant axons of a sabellid worm. J. Comp. Biochem. Physiol., 13, 453–460.Google Scholar
  54. Hargitt, C. W., 1906. Experiments on the behavior of tubiculous annelids. J. Exptl. Zool., 3, 295–320.Google Scholar
  55. Hargitt, C. W., 1909. Further observations on the behavior of tubiculous annelids. J. Exptl. Ecol., 7, 157–187.Google Scholar
  56. Hargitt, C. W., 1912. Observations on the behavior of tubiculous annelids. Biol. Bull., 2, 67–94.Google Scholar
  57. Harper, E. H., 1905. Reactions to light and mechanical stimuli in the earthworm, Perïchaeta bermudensis (Beddard). Biol. Bull., 10, 17–34.Google Scholar
  58. Harris, J. D., 1943. Studies on nonassociative factors inherent in conditioning. Comp. Psycho. Monogr., 18, 1 (Whole No. 93).Google Scholar
  59. Hauenschild, C., 1960. Lunar periodicity. Cold Spring Harbor Symp. Quant Biol., 25, 491–497.Google Scholar
  60. Heck, L., 1920. Über die Bildung einer Assoziation beim Regenwurm auf Grund von Dressurversuchen. Lotos, 68, 168–189.Google Scholar
  61. Henderson, T. B., and Strong, P. N., 1972. Classical conditioning in the leech Macrobdella ditetra as a function of CS and UCS intensity. Cond. Reflex, 7, 210–215.Google Scholar
  62. Herter, K., 1926. Versuche über die phototaxis von Nereis diversicolor O. F. Muller. Z. Vergl. Physiol., 4, 103–141.Google Scholar
  63. Herz, M. J., Peeke, H. V. S., and Wyers, E. J., 1964. Temperature and conditioning in the earthworm Lumbricus terrestris. Anim. Behay., 12, 502–507.Google Scholar
  64. Herz, M. J., Peeke, H. V. S., and Wyers, E. J., 1967. Classical conditioning of the extension response in the earthworm. Physiol. Behay., 2, 409–411.Google Scholar
  65. Hess, C., 1914. Untersuchungen über den Lichtsinn mariner Würmer and Krebse. Pflugers. Arch. Ges. Physiol., 155, 421–435.Google Scholar
  66. Hess, W. N., 1924. Reactions to light in the earthworm L. terrestris. J. Morphol. Physiol., 39, 515–542.Google Scholar
  67. Hesse, R., 1899. Untersuchungen über die Organe der Lichtempfindungen bei niederen Thieren: V. Die Augen der polychaten Anneliden. Z. Wiss. Zool., 65, 446–516.Google Scholar
  68. Hinde, R., 1954. Factors governing the changes in strength of a partially inborn response, as shown by the mobbing behaviour of the chaffinch (Fringitia coelebs). I. The nature of the response, and an examination of its course. 11. The waning of the response. Proc. Roy. Soc. Ser. B, 142, 306–358.Google Scholar
  69. Holmes, S. J., 1905. The selection of random movements as a factor in phototaxis. J. Comp. Neurol., 15, 98–112.Google Scholar
  70. Holmes, S. J., 1911. The Evolution of Animal Intelligence, Holt, New York.Google Scholar
  71. Horridge, G. A., 1959. Analysis of the rapid responses of Nereis and Harmothoe (Annelida). Proc. Roy. Soc. Ser. B, 150, 245–262.Google Scholar
  72. Howell, C. D., 1939. The responses to light in the earthworm, Pheretima agrestris (Goto and Hatai), with special reference to the function of the nervous system. J. Exptl. Zool., 81, 231–259.Google Scholar
  73. Iwahara, S., and Fujita, O., 1965. Effect of intertrial interval and removal of the supra-pharyngeal ganglion upon spontaneous alternation in the earthworm, Pheretima communissima. Jap. Psycho. Res., 7, 1–14.Google Scholar
  74. Jacobson, A. L., 1963. Learning in flatworms and annelids. Psycho. Bull., 60, 74–94. James, J. P., and Woodruff, A. B., 1965. Latent learning in earthworms. Psycho. Rep., 16, 406.Google Scholar
  75. Jennings, H. S., 1904. Contributions to the Study of the Behavior of Lower Organisms, Carnegie Institute of Washington Publication No. 16, 256 pp.Google Scholar
  76. Jennings, H. S., 1905. The method of regulation in behavior and other fields. J. Exptl. Zool, 2, 448–494.Google Scholar
  77. Kaiser, F., 1954. Beiträge zur Bewegungsphysiologie der Hirudeen. Zoo. Jb. ( Allg. Zoo. ), 65, 59–90.Google Scholar
  78. Kandel, E. R., 1965. Cellular studies of learning. In Quarton, G. G., Melnechuk, T., and Schmitt, F. O. (eds.), The Neurosciences, Rockefeller University Press, New York, pp. 666–689.Google Scholar
  79. Kasper, P., 1961. Maze learning and spontaneous alternation in the earthworm. Paper read at meeting of Midwestern Psychological Association, Chicago.Google Scholar
  80. Kirk, W. E., and Thompson, R. W., 1967. Effects of light, shock, and goal box conditions on runway performance of the earthworm, Lumbricus terrestris. Psycho. Rec., 17, 49–54.Google Scholar
  81. Krasne, F. B., 1965. Escape from recurring tactile stimulation in Branchiomma vesiculosum. J. Exptl. Biol., 42, 307–322.Google Scholar
  82. Krivanek, J. O., 1956. Habit formation in the earthworm, Lumbricus terrestris. Physiol. Zool., 29, 241–250.Google Scholar
  83. Kuenzer, P. P., 1958. Verhaltenphysiologische Untersuchungen über das Zucken des Regenwürms. Z. Tierpsychol., 15, 31–49.Google Scholar
  84. Laverack, M. S., 1963. The Physiology of Earthworms, Macmillan, New York.Google Scholar
  85. Livingston, R. B., 1966. Brain mechanisms in conditioning and learning. Neurosci. Res. Progr. Bull., 4, 235–347.Google Scholar
  86. Malek, R., 1927. Assoziatives Gedächtnis bei den Regenwürmern. Bio. Gen., 3, 317–328.Google Scholar
  87. Mann, K. H., 1962. Leeches (Hirudinea): Their Structure, Physiology, Ecology and Embryology, Pergamon, Oxford.Google Scholar
  88. Mast, S. O., 1938. Factors involved in the process of orientation of lower organisms to light. Biol. Rev., 13, 186–224.Google Scholar
  89. Moore, A. R., and Kellogg, F. M., 1916. Note on the galvanotropic response of the earthworm. Biol. Bull. Woods Hole, 30, 131–134.Google Scholar
  90. Morgan, R. F., Ratner, S. F., and Denny, M. R., 1965. Response of earthworms to light as measured by the GSR. Psychon. Sci., 3, 27–28.Google Scholar
  91. Newell, R. C. (1970). The Biology of Intertidal Animals. London, Logos Press.Google Scholar
  92. Nicol, J. A. C., 1948a. Giant axons of annelids. Quart. Rev. Biol., 23, 291–323.Google Scholar
  93. Nicol, J. A. C., 19486. The giant nerve fibres in the central nervous system of Myxicola (Polychaeta: Sabellidae). Quart. J. Microscop. Sci., 89, 1–45.Google Scholar
  94. Nicol, J. A. C., 1950. The responses of Branchiomma vesiculosum (Montagu) to photic stimulation. J. Mar. Biol. Ass. U.K., 29, 303–320.Google Scholar
  95. Nicol, J. A. C., 1951. Giant axons and synergic contractions in Branchiomma vesiculosum. J. Exptl. Biol., 28, 22–31.Google Scholar
  96. Peeke, H. V. S., Herz, M. J., and Wyers, E. J., 1965. Ganglia removal and photically driven activity in the earthworm (Lumbricus terrestris). Psychon. Sci., 3, 187–188.Google Scholar
  97. Peeke, H. V. S., Herz, M. J., and Wyers, E. G., 1967. Forward conditioning, backward conditioning, and pseudoconditioning sensitization in the earthworm (Lumbricus terrestris). J. Comp. Physiol. Psycho, 53, 534–536.Google Scholar
  98. Prosser, C. L., 1934. Effect of the central nervous system in response to light in Eisenia foetida Say. J. Comp. Neurol., 59, 71–96.Google Scholar
  99. Rabbe, S., 1939. Zur Analyse der Assoziationbildung bei Lumbriculus variegatus Mull. Z. Vergl. Physiol., 26, 611–643.Google Scholar
  100. Ratner, S. C., 1962. Conditioning of decerebrate worms, Lumbricus terrestris. J. Comp. Physiol. Psycho, 55, 174–177.Google Scholar
  101. Ratner, S. C., 1964. Worms in a straight alley: Acquisition and extinction of phototaxis. Psycho. Rec., 14, 31–36.Google Scholar
  102. Ratner, S. C., 1965. Research and theory on conditioning of annelids. In Davenport, D., and Thorpe, W. H. (eds.), Learning and Associated Phenomena in Invertebrates. Anim. Behay. Suppl., I, 101–108.Google Scholar
  103. Ratner, S. C. The cerebral ganglion of earthworms in habituation and retention. Paper presented at Psychonomic Society Meetings, St. Louis, Nov. 3, 1972.Google Scholar
  104. Ratner, S. C., and Miller, K. R., 1959a. Classical conditioning in earthworms, Lumbricus terrestris. J. Comp. Physiol. Psycho, 52, 102–105.Google Scholar
  105. Ratner, S. C., and Miller, K, R., 1959. Effects of spacing of training and ganglia removal on conditioning in earthworms. J. Comp. Physiol. Psycho, 52, 667–672.Google Scholar
  106. Ratner, S. C., and Stein, D. G., 1965. Responses of worms to light as a function of an intertrial interval and ganglion removal. J. Comp. Physiol. Psychol., 59, 301–304.Google Scholar
  107. Ray, A. J., 1968. Instrumental light avoidance by the earthworm. Commun. Behay. Biol., 1, 205–208.Google Scholar
  108. Razran, G., 1971. Mind in Evolution: An East-West Synthesis of Learned Behavior and Cognition, Houghton-Mifflin, Boston.Google Scholar
  109. Reynierse, J. H., 1968. Effects of temperature and temperature change on earthworm loco-motor behavior. Anim. Behay., 16, 480–484.Google Scholar
  110. Reynierse, J. H., and Ratner, S. C., 1964. Acquisition and extinction in the earthworm, Lumbricus terrestris. Psychol. Rec., 14, 383–387.Google Scholar
  111. Reynierse, J. H., Halliday, R. A., and Nelson, M. R., 1968. Non-associative factors inhibiting earthworm straight-alley performance. J. Comp. Physiol. Psycho, 65, 160–163.Google Scholar
  112. Roberts, M. B. V., 1962a. The giant fibre reflex of the earthworm, Lumbricus terrestris L. I. The rapid response. J. Exptl. Biol., 39, 219–227.Google Scholar
  113. Roberts, M. B. V., 1962b. The rapid responses of Myxicola infundibulum (Grube). J. Mar. Bio. Ass. U.K., 42, 527–539.Google Scholar
  114. Roberts, M. B. V., 1966. Facilitation in the rapid response of the earthworm, Lumbricus terrestris L. J. Exptl. Bio, 45, 141–150.Google Scholar
  115. Robinson, J. S., 1953. Stimulus substitution and response learning in the earthworm. J. Comp. Physiol. Psycho, 46, 262–266.Google Scholar
  116. Rosenthal, R., 1966. Experimenter Effects in Behavioral Research, Appleton-CenturyCrofts, New York.Google Scholar
  117. Rullier, F., 1948. La vision et l’habitude chez Mercierella enigmatica Fauvel. Bull. Lab. Mar. Dinard, 30, 21–27.Google Scholar
  118. Rushton, W. A. H., 1945. Action potentials from the isolated nerve cord of the earthworm. Proc. Roy. Soc. Ser. B, 132, 423–437.Google Scholar
  119. Schmidt, H., Jr., 1955. Behavior of two species of worms in the same maze. Science, 121, 341–342.PubMedGoogle Scholar
  120. Sherrington, C. S., 1906. The Integrative Action of the Nervous System, Yale University Press, New Haven.Google Scholar
  121. Smith, A. C., 1902. The influence of temperature, odors, light and contact in the movements of the earthworm. Am. J. Physiol., 6, 459–486.Google Scholar
  122. Smith, G. E., and Dinkes, I., 1971. Passive avoidance learning by the earthworm. Paper delivered at the Eastern Psychological Association Meeting, New York City, April 15–17.Google Scholar
  123. Staddon, J. E. R., and Simmelhag, V. L., 1971. The “superstition” experiment: A reexamination of its implications for the principles of adaptive behavior. Psych. Rev., 78, 3–43.Google Scholar
  124. Stammers, F. M. G., 1930. Observations in the behavior of land leeches. Parasitology, 40, 237–245.Google Scholar
  125. Swartz, R. D., 1929. Modification of behavior in earthworms. J. Comp. Psychol., 9, 17–33.Google Scholar
  126. Tauc, L. T., 1959. Interaction non-synaptic entre deux neurones adjacent du ganglion abdominal de l’aplysie. Compt. Rend. Hebd. Seanc. Acad. Sci. Paris, 248, 1857–1859.Google Scholar
  127. Thompson, R. F., and Spencer, W. A., 1966. Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev., 73, 16–43.Google Scholar
  128. Thorpe, W. H., 1956. Learning and Instinct in Animals, Longmans Green, London.Google Scholar
  129. Wanatabe, A., and Bullock, T. A., 1960. Modulation of the activity of one neurone by subthreshold slow potentials in another cardiac ganglion. J. Gen. Physiol., 1031–1045.Google Scholar
  130. Wayner, M. J., Jr., and Zellner, D. K., 1958. The role of the suprapharyngeal ganglion in spontaneous alternation and negative movements in Lumbricus terrestris. J. Comp. Physiol. Psychol., 51, 282–287.Google Scholar
  131. Wells, G. P., 1939. Intermittent activity in polychaete worms. Nature, 144, 940–941.Google Scholar
  132. Wells, G. P., 1949. The behavior of A. marina L. in sand, and the role of spontaneous activity cycles. J. Mar. Biol. Ass. U.K., 28, 465–478.Google Scholar
  133. Wells, G. P., 1950. Spontaneous activity cycles in polychaete worms. Symp. Soc. Exptl. Biol., 4, 127–142.Google Scholar
  134. Wells, G. P., and Albrecht, E. B., 1951. The integration of activity cycles in the behavior of A. marina L. J. Exptl. Biol., 28, 41–50.Google Scholar
  135. Wells, G. P., and Dales, R. P., 1951. Spontaneous activity patterns in animal behavior: The irrigation of the burrow in the polychaetes Chaetopterus variopedatus Renier and Nereis diversicolor O. F. Muller. J. Mar. Biol. Ass. U.K., 29, 661–680.Google Scholar
  136. Wells, M. J. Sensitization and evolution of associative learning. In Salanki, J. (ed.), Neurobiology of Invertebrates. Academic Kiado, Budapest, pp. 391–411.Google Scholar
  137. Wherry, R. J., and Sanders, J. M., 1941. Modifications of a tropism in Lumbricus terrestris. Trans. Ill. Acad. Sci., 34, 237–238.Google Scholar
  138. Wilson, D. M., 1959. Long-term facilitation in a swimming sea anemone. J. Exptl. Biol., 36, 526–532.Google Scholar
  139. Wilson, D. M., 1960. Nervous control of movement in annelids. J. Exptl. Biol., 37, 46–56.Google Scholar
  140. Wyers, E. J., Peeke, H. V. S., and Herz, M. J., 1964. Partial reinforcement and resistance to extinction in the earthworm. J. Comp. Physiol. Psychol., 57, 113–116.Google Scholar
  141. Yerkes, A. W., 1906. Modifiability of Hydroides dianthus. V. J. Comp. Neurol., 16, 441–450.Google Scholar
  142. Yerkes, R. M., 1912. The intelligence of earthworms. J. Anim. Behay., 2, 332–352.Google Scholar
  143. Young, J. Z., 1963. Some essentials of neural memory systems. Paired centres that regulate and address the signals of the results of actions. Nature, 198, 626–630.PubMedGoogle Scholar
  144. Young, J. Z., 1964. A Mode of the Brain, Clarendon Press, Oxford.Google Scholar
  145. Zellner, D. K., 1966. Effects of removal and regeneration of the suprapharyngeal ganglion on learning, retention, extinction and negative movements in the earthworm Lumbricus terrestris L. Physiol. Behay., 1, 151–159.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • James A. Dyal
    • 1
  1. 1.Department of PsychologyUniversity of WaterlooWaterlooCanada

Personalised recommendations