Advertisement

Platyhelminthes: The Turbellarians

  • W. C. Corning
  • S. Kelly

Abstract

Interest in the phylogenetic development of learning capacities must lead to heavy emphasis on the flatworm, since it is the primitive turbellarian form Acoela which is widely accepted as representing the beginnings of bilateral existence. Of critical significance at this phylogenetic point are the appearance of the bilateral form and the consistently forward-directed anterior end, the concentration of nervous tissue and sensory apparatus in the anterior portion, and the appearance of refined organ systems. The importance of the planarians cannot be overestimated. As Hansen (1961) stresses, “Of the non-flatworm metazoan phyla . . . there is not one phylum, with the possible exception of the Cnidaria (Coelenterata), whose suspected affinities do not eventually lead us back to the Turbellaria.” The presence of a well-developed nervous system complete with brain and longitudinal medullary cords connected by commissures, polarized synaptic conduction giving directed and rapid communication, and sensory and motor specializations provide the comparative psychologist with a most interesting class of animals. It is no mere coincidence that it is in these animals that the first clear evidence of associative learning is obtained. These demonstrations were not without controversy in the initial stages, but the difficulties were perhaps more of a problem with semantics than with the ability of the planarian to perform in certain tasks.

Keywords

Classical Conditioning Cerebral Ganglion Differential Conditioning Memory Transfer Maze Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, G., 1971. Biology of Memory, Plenum Press, New York.Google Scholar
  2. Agoston, E., 1960. Learning and regeneration in the planarian. Worin Runner’s Digest, 2, 53–55.Google Scholar
  3. Applewhite, P., 1971. Similarities in protozoan and flatworm behavior. Unpublished manuscript.Google Scholar
  4. Applewhite, P. B., and Morowitz, H. J., 1966. The micrometazoa as model systems for studying the physiology of memory. Yale J. Biol. Med., 39, 90–105.PubMedGoogle Scholar
  5. Applewhite, P. B., and Morowitz, H. J., 1967. Memory and the microinvertebrates. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 329–340.Google Scholar
  6. Barnes, C. C., and Katzung, B. G., 1963. Stimulus polarity and conditioning in planaria. Science, 141, 728–730.PubMedGoogle Scholar
  7. Baxter, R., and Kimmel, H. D., 1963. Conditioning and extinction in the planarian. Am. J. Psychol., 76, 665–669.Google Scholar
  8. Behrens, M. E., 1962. The electrical response of the planarian photo-receptors. Comp. Biochem. Physiol., 5, 129–138.PubMedGoogle Scholar
  9. Bennett, E., and Calvin, M., 1964. Failure to train planarians reliably. Neurose!. Res. Progr. Bull. 2, 3–24.Google Scholar
  10. Best, J. B., 1963. Protopsychology. Sci. Am., 208, 55–62.Google Scholar
  11. Best, J. B., 1965. Behavior of planaria in instrumental learning paradigms. Anim. Behay., 13, Suppl. 1, 69–75.Google Scholar
  12. Best, J. B., 1967a. Major factors in classical conditioning of planarians: Stimulus waveform and neural geometry. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 255–270.Google Scholar
  13. Best, J. B., 19676. The neuroanatomy of the planarian brain and some functional implications. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 144–163.Google Scholar
  14. Best, J. B., and Elshtain, E., 1966. Biophysics of unconditioned response elicitation in planarians by electric shock. Worm Runner’s Digest, 8(1), 8–24; Science, 151, 727–728.Google Scholar
  15. Best, J. B., and Rubinstein, I., 1962. Maze learning and associated behavior in planaria. J. Comp. Physiol. Psychol., 55, 560–566.Google Scholar
  16. Best, J. B., Morita, M., and Noel, J., 1968. Fine ultrastructure and function of planarian goblet cells. J. Ultrastruct. Res., 24, 385–387.PubMedGoogle Scholar
  17. Block, R. A., and McConnell, J. V., 1967. Classically conditioned discrimination in the planarian, Dugesia dorotocephala. Nature, 215, 1465–1466.Google Scholar
  18. Brvndsted, H. V., 1953. Rate of regeneration in planarians after starvation. J. Embryol. Exptl. Morphol., 1, 43–47.Google Scholar
  19. Brendsted, H., and Brendsted, H. V., 1954. Size of fragment and rate of regeneration in planarians. J. Embryo!. Exptl. Morphol., 2, 49–54.Google Scholar
  20. Brendsted, H. V., 1955. Planarian regeneration. Biol. Rev., 30, 65–126.Google Scholar
  21. Brown, F. A., 1962a. Response of the planarian, Dugesia, to very weak horizontal electrostatic fields. Bio!. Bull., 123, 282–294.Google Scholar
  22. Brown, F. A., 19626. Response of the planarian, Dugesia, and the protozoan, Paramecium, to very weak horizontal magnetic fields. Biol. Bull., 123, 164–181.Google Scholar
  23. Brown, F. A., 1963. An orientational response to weak gamma radiation. Bio!. Bu!l., 125 (2), 206–225.Google Scholar
  24. Brown, F. A., and Parke, Y. H., 1967. Association-formation between photic and subtle geophysical stimulus patterns-a new biological concept. Bio!. Bu!l., 132, 311–319.Google Scholar
  25. Brown, H. M., 1964. Experimental procedures and state of nucleic acids as factors contributing to “learning” phenomena in planaria. Unpublished doctoral dissertation, University of Utah.Google Scholar
  26. Brown, H. M., 1967a. Effects of ultraviolet and photorestorative light on the phototaxic behavior of planaria. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 295–309.Google Scholar
  27. Brown, H. M., 19676. Some characteristics of the light-evoked electrical response of the planarian eyecup. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 164–165.Google Scholar
  28. Brown, H. M., and Beck, E. C., 1964. Does learning in planaria survive regeneration? Fed. Proc., 23, 254.Google Scholar
  29. Brown, H. M., and Ogden, T. E., 1968. The electrical response of the planarian ocellus. J. Gen. Physiol., 51, 237–253.PubMedGoogle Scholar
  30. Brown, H. M., Dustman, R. E., and Beck, E. C., 1966a. Experimental procedures that modify light response frequency of regenerated planaria. Physiol. Behay., 1, 245–249.Google Scholar
  31. Brown, H. M., Dustman, R. E., and Beck, E. C., 19666. Sensitization in planaria. Physiol. Behay., 1, 305–308.Google Scholar
  32. Bullock, T. H., and Horridge, A., 1965. Structure and Function in the Nervous System of Invertebrates, Freeman, San Francisco.Google Scholar
  33. Byrne, W. K., 1970. Molecular Approaches to Learning and Memory, Academic Press, New York.Google Scholar
  34. Chapouthier, G., 1967. Conditioning in the European planarian, Dendrocoelum lacteum: The effects of prolonged conditioning. J. Biol. Psychol., 9, 23–30.Google Scholar
  35. Chapouthier, G., 1968. Relations entre deux réactions des Planaires face à une discrimination droite-gauche. Comps. Rend. Acad. Sci. Paris, 266, 905–907.Google Scholar
  36. Cherkashin, A. N., and Sheiman, 1. M., 1966. The use of simple biological models in memory mechanisms. Paper presented at International Psychology Congress, Moscow.Google Scholar
  37. Cherkashin, A. N., and Sheiman, 1. M., 1967. Conditioning in planarians and RNA content. J. Biol. Psychol., 9, 5–11.Google Scholar
  38. Cherkashin, A. N., Sheiman, 1. M., and Bogorovskaya, G. 1., 1967. Conditioned reflexes in planarians and regeneration experiments. Neurosci. Transl., 1, 12.Google Scholar
  39. Cohen, J., 1965. Diurnal cycles and maze learning in planarians. Worm Runner’s Digest, 7, 20–24.Google Scholar
  40. Corning, W. C., 1964. Evidence of right-left discrimination in planarians. J. Psychol., 58, 131–139.Google Scholar
  41. Corning, W. C., 1966. Retention of a position discrimination after regeneration in planarians. Psychon. Sci., 5, 17–18.Google Scholar
  42. Corning, W. C., 1967. Regeneration and retention of acquired information. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 281–294.Google Scholar
  43. Corning, W. C., 1971. Recent learning demonstrations and some biochemical correlates in planarians and protozoans. In Adam, G. (ed.), Biology of Memory, Plenum Press, New York, pp. 101–119.Google Scholar
  44. Corning, W. C., and Freed, S., 1968. Planarian behavior and biochemistry. Nature, 219, 1227–1230.PubMedGoogle Scholar
  45. Corning, W. C., and John, E. R., 1961. Effect of ribonuclease on retention of conditioned response in regenerated planarians. Science, 134, 1363–1364.PubMedGoogle Scholar
  46. Corning, W. C., and Ratner, S. C., 1967. Chemistry of Learning: Invertebrate Research, Plenum Press, New York.Google Scholar
  47. Corning, W. C., and Riccio, D., 1970. The planarian controversy. In Byrne, W. (ed.), Mole- cular Approaches to Learning and Memory, Academic Press, New York, pp. 107–150.Google Scholar
  48. Cornwell, P., 1960. Classical conditioning with massed trials in the planarian. Worm Runner’s Digest, 2, 34–39.Google Scholar
  49. Cornwell, P., 1961. An attempted replication of studies by Halas et al. and by Thompson and McConnell. Worm Runner’s Digest, 3, 91–98.Google Scholar
  50. Cornwell, P., Cornwell, G., and Clay, M., 1961. Retention of a conditioned response following regeneration in the planarian. Worm Runner’s Digest, 3, 34–38.Google Scholar
  51. Coward, S., 1969. Regeneration in planarians: Some unresolved problems and questions. J. Biol. Psychol., 10, 15–19.Google Scholar
  52. Crawford, F. T., and Skeen, L. C., 1967. Operant responding in the planarian: A replication study. Psycho!. Rep., 20, 1023–1027.Google Scholar
  53. Crawford, T., 1967. Behavioral modification of planarians. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, 234–250.Google Scholar
  54. Crawford, T., and King, L., 1966. Spontaneous recovery of a classically conditioned response in the planarian. Psychon. Sci., 6, 427–428.Google Scholar
  55. Crawford, T., King, F., and Siebert, L., 1965. Amino acid analysis of planarians following conditioning. Psychon. Sci., 2, 49–50.Google Scholar
  56. Crawford, T., Livingston, P., and King, F., 1966. Distribution of practice in the classical conditioning of planarians. Psychon. Sci., 4, 29–30.Google Scholar
  57. Cummings, S. B., and Moreland, C. C., 1959. Sensitization vs. conditioning in planaria: Some methodological considerations. Am. Psychologist, 14, 410.Google Scholar
  58. Dilk, F., 1937. Ausbildung von Assoziationen bei Planaria gonocephala. Z. Vergl. Physiol., 25, 47–82.Google Scholar
  59. Dyal, J. A., 1971. Transfer of behavioral bias: Reality and specificity. In Fjerdingstad, E. (ed.), Chemical Transfer of Learned Information, North-Holland Publishing Co., Amsterdam.Google Scholar
  60. Emhart, E. N., and Sherrick, C., 1959. Retention of a maze habit following regeneration in planaria (D. macu/ata). Paper presented at meeting of Midwestern Psychological Association, St. Louis.Google Scholar
  61. Fantl, S., and Nevin, J. A., 1965. Classical discrimination in planarians. Worm Runner’s Digest, 7, 32–34.Google Scholar
  62. Fjerdingstad, E. (ed.), 1971. Chemical Transfer of Learned Information, North-Holland Publishing Co., Amsterdam.Google Scholar
  63. Freed, S., 1966. Endogenous Biochemistry of Planarians Correlated with Learning Experiments at Brookhaven National Laboratory, BNL Report No. 981 (T-414). (Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, Virginia. )Google Scholar
  64. Griffard, C. D., 1963. Classical conditioning of the planarian Phagocata gracilis to water flow. J. Comp. Physiol. Psychol., 56, 597–600.Google Scholar
  65. Griffard, C. D., and Peirce, J. T., 1964. Conditioned discrimination in the planarian. Science, 144, 1472–1473.PubMedGoogle Scholar
  66. Guilliams, C. I., and Harris, C., 1971. Accelerated conditioning of contracted immobilized planarians. J. Biol. Psychol., 12, 27–33.Google Scholar
  67. Gurowitz, E. M., 1969. The Molecular Basis of Memory, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  68. Halas, E. S., James, R. L., and Stone, L. A., 1961. Types of responses elicited in planaria by light. J. Comp. Physiol. Psychol., 54, 302–305.Google Scholar
  69. Halas, E. S., James, R. L., and Knutson, C., 1962. An attempt at classical conditioning in the planarian. J. Comp. Physiol. Psychol., 55, 969–971.Google Scholar
  70. Hansen, E. D., 1961. Anima! Diversity, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  71. Hartrey, A. L., Keith-Lee, P., and Morton, W. D., 1964. Planaria: Memory transfer through cannibalism reexamined. Science, 146, 274–275.Google Scholar
  72. Hay, E. D., 1968. Dedifferentiation and metaplasia in vertebrate and invertebrate regeneration. In Ursprung, H. (ed.), The Stability of the Dedifferentiated State, Springer-Verlag, New York.Google Scholar
  73. Haynes, S. E., Jennings, L. B., and Wells, P. H., 1965. Planaria learning: Nontransfer and non-facilitation in a Van Oye maze. Am. Zoologist, 4, 424.Google Scholar
  74. Henderson, T. R., and Eakin, R. E., 1961. Irreversible alteration of differentiated tissues in planaria by purine analogues. J. Exptl. Zool., 146 (3), 253–263.Google Scholar
  75. Hovey, H. B., 1929. Associative hysteresis in marine flatworms. Physiol. Zool., 2, 322–333.Google Scholar
  76. Hullett, J. W., and Homzie, M. J., 1966. Sensitization effect in the classical conditioning of Dugesia dorotocephala. J. Comp. Physiol. Psychol., 62, 227–230.Google Scholar
  77. Humpheries, B., 1961. Maze learning in planaria. Worm Runner’s Digest, 3, 114–116.Google Scholar
  78. Humpheries, B., and McConnell, J. V., 1964. Factors affecting maze learning in planarians. Worm Runner’s Digest, 6, 52–59.Google Scholar
  79. Hyden, H., 1959. Biochemical changes in glial cells and nerve cells at varying activity. Proc. IV Internat. Congr. Biochem., 3, 64–89.Google Scholar
  80. Hyden, H., Egyhazi, E., John, E. R., and Bartlett, F., 1969. RNA base ratio changes in planaria during conditioning. J. Neurochem., 16, 813–821.PubMedGoogle Scholar
  81. Hyman, L. H., 1919. Physiological studies in planaria. III. Oxygen consumption in relation to age (size) differences. Biol. Bull., 37, 388–403.Google Scholar
  82. Hyman, L. H., 1923. Physiological studies on planaria. V. Oxygen consumption of pieces with respect to length, level and time after section. J. Exptl. Zool., 37, 47–68.Google Scholar
  83. Hyman, L. H., 1951. The Invertebrates, Vol. 2: Platyhelminthes and Rhynchocoela, McGraw-Hill, New York.Google Scholar
  84. Hyman, L. H., and Bellamy, A. W., 1922. Studies on the correlation between metabolic gradients, electrical currents and galvanotaxis. I. Biol. Bull., 43, 313–347.Google Scholar
  85. Jacobson, A. L., 1963. Learning in flatworms and annelids. Psychol. Bull., 60, 74–94.PubMedGoogle Scholar
  86. Jacobson, A. L., 1965. Learning in planarians: Current status. Anim. Behay., 13, Suppl. 1, 76–81.Google Scholar
  87. Jacobson, A. L., 1967. Classical conditioning and the planarian. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 195–216.Google Scholar
  88. Jacobson, A. L., and Jacobson, R., 1963. Maze learning in planaria-a case history. Worm Runner’s Digest, 5, 69.Google Scholar
  89. Jacobson, A. L., Fried, C., and Horowitz, S. D., 1966a. Planarians and Memory. I. Transfer of learning by injection of RNA. Nature, 209, 599–601.PubMedGoogle Scholar
  90. Jacobson, A. L., Fried, C., and Horowitz, S. D., 19666. Planarians and memory. II. Influence of prior extinction on RNA transfer effect. Nature, 209, 599–601.Google Scholar
  91. Jacobson, A. L., Fried, C., and Horowitz, S. D., 1967. Classical conditioning, pseudoconditioning, or sensitization in the planarian. J. Comp. Physiol. Psychol., 64, 73–79.PubMedGoogle Scholar
  92. James, R. L., and Halas, E. S., 1964. No difference in extinction behavior in planaria following various types and amounts of training. Psycho!. Rec. 14, 1–11.Google Scholar
  93. Jenkins, M. M., 1963. Bipolar planarians in a stock culture. Science, 142 (3596): 1187.PubMedGoogle Scholar
  94. Jenkins, M. M., 1967. Aspects of planarian biology and behavior. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning, Plenum Press, New York, pp. 116–143.Google Scholar
  95. Jensen, D. D., 1964. Paramecia, planaria, and pseudolearning. Draft of paper presented at symposium “Learning and Related Phenomena in Invertebrates,” Cambridge University.Google Scholar
  96. Jensen, D. D., 1965. Paramecia. planaria, and pseudolearning. Anim. Behay. 13, Suppl. 1, 9–20.Google Scholar
  97. John, E. R., 1964. Studies on learning and retention in planaria. In Brazier, M. A. (ed.), Brain Function, Vol. 2, University of California Press, pp. 161–182.Google Scholar
  98. Kenk, R., 1967. Discussion on the biochemistry of memory. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, p. 323.Google Scholar
  99. Kimmel, H. D., and Harrell, V. L., 1964. Differential conditioning in the planarian. Psychon. Sci., 1, 227–228.Google Scholar
  100. Kimmel, H. D., and Harrell, V. L., 1966. Further study of differential conditioning in the planarian. Psychon. Sci., 5, 285–286.Google Scholar
  101. Kimmel, H. D., and Yaremko, R. M., 1966. Effect of partial reinforcement on acquisition and extinction of classical conditioning in the planarian. J. Comp. Physiol. Psychol., 61, 299–301.Google Scholar
  102. King, F. J., Crawford, F. T., and Klingman, R. L., 1965. A further study of amino acid analysis and conditioning of planarians. Psychon. Sci., 3, 189–190.Google Scholar
  103. Krugelis-Macrae, E., 1956. The occurrence of porphyrin in the planarian. Biol. Bull., 110, 69.Google Scholar
  104. Lacey, D. J., 1971. Temporal effects of RNase and DNase in disrupting acquired escape behavior in regenerated planaria. Psychon. Sci., 22, 139–140.Google Scholar
  105. Lecamp, M., 1942. Influence des acides amines sur la régénération. Comps. Rend. Acad. Sci., 214, 330–332.Google Scholar
  106. Lee, R. M., 1963. Conditioning of a free operant response in planaria. Science, 139, 1048–1049.PubMedGoogle Scholar
  107. Lender, Th., and Gabriel, A., 1960a. Sur la répartition des néoblasts de Dugesia lugubris (Turbellarie Triclade) avant et pendant la régénération. Comps. Rend. Acad. Sci., 250, 2465–2467.Google Scholar
  108. Lender, Th., and Gabriel, A., 1960. Etude histochimique des néoblasts de Dugesia lugubris (Turbellarie Triclade) avant et pendant la régénération. Bull. Soc. Zool. Fr., 85, 100–110.Google Scholar
  109. Lender, Th., and Klein, N., 1961. Mis en évidence des cellules sécrétrices dans la cerveau de la Planaire Polycelis nigra. Variation de leur nombre dans le cours de la régénération postérieure. Comps. Rend. Acad. Sci., 253, 331–334.Google Scholar
  110. McConnell, J. V., 1962. Memory transfer through cannibalism in planarians. J. Neuropsychiat., 3, Suppl. 1, s42.Google Scholar
  111. McConnell, J. V., 1965. Cannibals, chemicals, and contiguity. Anim. Behay., 13, Suppl. 1, 61–68.Google Scholar
  112. McConnell, J. V., 1966a. Comparative physiology: Learning in invertebrates. Ann. Rev. Physiol., 28, 107–136.Google Scholar
  113. McConnell, J. V., 1966b. New evidence for the “transfer of training” effect in planarians. Paper presented at International Congress of Psychology, Moscow.Google Scholar
  114. McConnell, J. V. (ed.), 1967a. A Manual of Psychological Experimentation on Planarians, 2nd ed., J. Biol. Psychol., Ann Arbor, Mich.Google Scholar
  115. McConnell, J. V., 19676. Specific factors influencing planarian behavior. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 217–233.Google Scholar
  116. McConnell, J. V., 1967c. The biochemistry of memory. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 310–322.Google Scholar
  117. McConnell, J. V., 1968. In search of the engram. In Corning, W., and Balaban, M. (eds.), The Mind: Biological Approaches to Its Function, Wiley, New York, pp. 49–68.Google Scholar
  118. McConnell, J. V., and Mpitsos, G., 1965. Effects of the presence or absence of slime on classical conditioning in planarians. Am. Zoologist, 5, 122.Google Scholar
  119. McConnell, J. V., and Shelby, J., 1970. Memory transfer in invertebrates. In Ungar, G. (ed.), Molecular Mechanisms in Memory and Learning, Plenum Press, New York, pp. 71–101.Google Scholar
  120. McConnell, J. V., Jacobson, R., and Maynard, D. M., 1958. Apparent retention of a conditioned response following total regeneration in the planarian. Am. Psychologist, 14, 410.Google Scholar
  121. McConnell, J. V., Jacobson, A. L., and Kimble, D. P., 1959. The effects of regeneration upon retention of a conditioned response in the planarian. J. Comp. Physiol. Psychol., 52, 1–5.Google Scholar
  122. McConnell, J. V., Cornwell, P., and Clay, M., 1960. An apparatus for conditioning planaria. Am. J. Psychol., 73, 618–622.Google Scholar
  123. Meglitsch, P., 1967. Invertebrate Zoology, Oxford University Press, New York.Google Scholar
  124. Morita, M., and Best, J. B., 1965. Electron microscopic studies on planaria. II. Fine structure of the neurosecretory system in the planarian Dugesia dorotocephala. J. Ultrastruct. Res., 13, 396–408.Google Scholar
  125. Morita, M., and Best, J. B., 1966. Electron microscopic studies of planaria. III. Some observations on the fine structure of planarian nervous tissue. J. Exptl. Zool., 161, 391–395.Google Scholar
  126. Owen, E. E., Weis, H. A., and Prince, L. H., 1938. Carcinogens and growth stimulation. Science, 87, 261–262.PubMedGoogle Scholar
  127. Owen, E. E., Weis, H. A., and Prince, L. H., 1939. Carcinogens and planarian tissue regeneration. Am. J. Cancer, 15, 424–426.Google Scholar
  128. Parker, G. H., and Burnett, F. L., 1900. The reactions of planarians with and without eyes to light. Am. J. Physiol., 4, 373–385.Google Scholar
  129. Pearl, R., 1903. The movements and reactions of fresh-water planarians: A study in animal behavior. Quart. J. Microscop. Sci., 46, 509–714.Google Scholar
  130. Pennak, R. W., 1953. Fresh-Water Invertebrates of the United States, Ronald Press, New York.Google Scholar
  131. Pickett, J. B. E., Jennings, L. B., and Wells, P. H., 1964. Influence of RNA and victim training on maze learning by cannibal planarians. Am. Zoologist, 4, 158.Google Scholar
  132. Ragland, R. S., and Ragland, J. B., 1965. Planaria: Interspecific transfer of a condition-ability factor through cannibalism. Psychon. Sci., 3, 117–119.Google Scholar
  133. Reynierse, J. H., 1967a. Aggregation formation in planaria, Phagocata gracilis and Cura foremanii: Species differentiation. Anim. Behar., 15, 270–272.Google Scholar
  134. Reynierse, J. H., 1967h. Reactions to light in four species of planaria. J. Comp. Physiol. Psychol., 63, 336–368.Google Scholar
  135. Riccio, D., and Corning, W. C., 1969. Slime and planarian behavior. Psycho!. Rec., 19, 507–513.Google Scholar
  136. Roe, K., 1963. In search of the locus of learning in planarians. Worm Runner’s Digest, 5, 16–18.Google Scholar
  137. Röhlich, P., 1968. Fine structural changes of photoreceptors induced by light and prolonged darkness. In Salanki, J. (ed.), Invertebrate Neurobiology, Plenum Press, New York, pp. 95–109.Google Scholar
  138. Scott, J. F., Fraccastoro, A. P., and Taft, E. B., 1956. Studies in histochemistry. I. Determination of nucleic acids in microgram amounts of tissue. J. Histochem. Cytochem., 4, 1–10.PubMedGoogle Scholar
  139. Shafer, J. N., and Corman, C. D.. 1963. Response of planaria to shock. J. Comp. Physiol. Psychol., 56, 601–603.Google Scholar
  140. Sengel, P., 1960. Culture in vitro de blastémes de régénération de Planaires. J. Embryo!. E.rpN. Morphol., 8, 468–476.Google Scholar
  141. Sengel, P., 1967. Aspects récents de la morphogenèse chez les Planaires. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 73–115.Google Scholar
  142. Soest, H., 1937. Dressurversuche mit Ciliaten und Rhabdocoelen Turbellarien. Z. Vergl. Physiol., 24, 720–748.Google Scholar
  143. Taliaferro, W. H., 1920. Reactions to light in Planaria maculata. J. E.rptl. Zool., 31, 59–116.Google Scholar
  144. Thompson, R., and McConnell, J. V., 1955. Classical conditioning in the planarian, Dugesia dorotocephala. J. Comp. Physiol. Psychol., 48, 65–68.Google Scholar
  145. Togrol, B. B., Ormanli, M., and Cantey, E. 1966a. Classical conditioning in the planaria Polycelis tenuis (Ijima), Dugesia lugubris (Schmidt) and the effects of regeneration upon retention of the conditioned response. Rev. Fac. Sci. Istanbul., 31, 147–166.Google Scholar
  146. Togrol, B. B., Ormanli, M., and Cantey, E. 1966. The effects of chemicals on the general behavior, regeneration and the learning capacity of planaria. Polycelis tennis (Ijima) and Dugesia lugubris (Schmidt). Rev. Fac. Sci. Istanbul., 31, 167–181.Google Scholar
  147. Tushmalova, N. A., 1967. Conditioned reflexes in the Baikal planarian Podoplana olivacea after injection of ribonuclease. Zh. Vysshei Nervnoi Deyatel. I. P. Pavlova, 17, 359–361.Google Scholar
  148. Ungar, G., 1970. Molecular Mechanisms in Memory and Learning, Plenum Press, New York. Van Deventer, J. M. (1963). Unpublished data.Google Scholar
  149. Van Deventer, J. M., and Ratner, S. C., 1964. Variables affecting the frequency of response of planaria to light. J. Comp. Physiol. Psychol., 57, 407–411.Google Scholar
  150. Van Oye, P., 1920. Over het geheugen bij fr flatwormen en andere biologische waarnemingen bji deze dieren. Natuurwet. Tijdschr., 2, 1.Google Scholar
  151. Vattano, F. J., and Hullett, J. H., 1964. Learning in planarians as a function of interstimulus interval. Psychon. Sci., 1, 331–332.Google Scholar
  152. Viaud, G., 1954. Etude quantitative de la force électro-motrice d’opposition produite par les planaires (Planaria = Dugesia lugubris) en réponse à une excitation électrique due à un courant continu. Compt. Rend. Soc. Biol., 148, 2068.Google Scholar
  153. Walker, D. R., 1966. Memory transfer in planarians: an artifact of the experimental variables. Psychon. Sci., 5, 357–358.Google Scholar
  154. Walker, D. R., and Milton, G. A., 1966. Memory transfer versus sensitization in cannibal planarians. Psychon. Sci., 5, 293–294.Google Scholar
  155. Walter, H. E., 1908. The reactions of planaria to light. J. Exptl. Zool., 5, 35–163.Google Scholar
  156. Wells, P. H., 1967. Training flatworms in a Van Oye maze. In Corning, W. C., and Ratner S. C. (eds.), Chemistry of Learning: Invertebrate Research,Plenum Press, New York, pp. 251–254.Google Scholar
  157. Wells, P. H., Jennings, L. B., and Davis, M., 1966. Conditioning planarian worms in a Van Oye type maze. Am. Zoologist, 6, 295.Google Scholar
  158. Westerman, R. A., 1963. A study of the habituation of responses to light in the planarian Dugesia dorotocephala. Worm Runner’s Digest, 5, 6–11.Google Scholar
  159. Yaremko, R. M., and Kimmel, H. D., 1969. Two procedures for studying partial reinforcement effects in classical conditioning of the planarian. Anim. Behar., 17, 40–42.Google Scholar
  160. Zelman, A., Kabat, L., Jacobson, R., and McConnell, J. V., 1963. Transfer of training through injection of “conditioned” RNA into untrained planarians. Worm Runner’s Digest, 5, 14.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • W. C. Corning
    • 1
  • S. Kelly
    • 1
  1. 1.Division of Biopsychology, Department of PsychologyUniversity of WaterlooWaterlooCanada

Personalised recommendations