Behavioral Modifications in Coelenterates

  • Norman B. Rushforth


Coelenterates have proved to be perplexing animals to the behavioral physiologist. Their structural simplicity, diffuse nervous organization, and the early observations of their simple, stereotyped activities suggested that they were fruitful preparations for the study of the physiological mechanisms underlying behavior. Indeed, Pantin in his famous Croonian Lecture, The Elementary Nervous System, predicted that in the coelenterates we are nearer to “a complete analysis of the structural units on which behavior is based” than in any other animals (Pantin, 1952, p. 147). Such a belief was based on the extensive studies of the contraction reflex responses of the sea anemones Metridium and Calliactis.However, such simple reflexes play only a limited part in coelenterate behavior. The behavioral simplicity of these animals has proved to be more apparent than real, for today, 20 years later, we seem further from a complete analysis than was previously suspected.


Conditioning Stimulus Unconditioned Stimulus Mechanical Stimulation Behavioral Modification Mechanical Agitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allabach, L. F., 1905. Some points regarding the behavior of Metridium. Biol. Bull., 10, 35–43.Google Scholar
  2. Aschoff, J., 1961. Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp. Quant. Biol., 25, 11–28.Google Scholar
  3. Batham, E. J., and Pantin, C. F. A., 1950. Phases of activity in the sea-anemone Metridium senile (L) and their relation to external stimuli. J. Exptl. Biol., 27, 377–399.Google Scholar
  4. Bohn, G., 1906. La persistance du rythme des marées chez l’Actinia equina. Compt. Rend.Google Scholar
  5. Soc. Biol., 61,661–663.Google Scholar
  6. Bohn, G., 1907. Le rythme nycethéméral chez les Actinies. Comps. Rend. Soc. Biol., 62, 473–476.Google Scholar
  7. Bohn, G., 1908a. De l’influence de l’oxygène dissous sur les réactions des Actinies. Compt. Rend. Soc. Biol., 64, 1163–1166.Google Scholar
  8. Bohn, G., 1986. Les facteurs de la rétraction et de l’épanouissement des Actinies. Comps. Rend. Soc. Biol., 64, 1163–1166.Google Scholar
  9. Bohn, G., 1909. Les rythmes vitaux chez les Actinies. Comps. Rend. Ass. Franc. Av. Sci., 37, 613–619.Google Scholar
  10. Bohn, G., 1910a. Comparison entre les réactions des Actinies de la Méditerranée et celles de la Manche. Comps. Rend. Soc. Biol., 68, 253–255.Google Scholar
  11. Bohn, 1916. Les réactions des Actinies aux basses températures. Compt. Rend. Soc. Biol., 68, 964–966.Google Scholar
  12. Bohn, G., and Pieron, H., 1906. Le rythme des marées et la phénomène de l’anticipation reflexe. Compt. Rend. Soc. Biol., 64, 660–661.Google Scholar
  13. Brown, F. A., Hastings, J. W., and Palmer, J. D., 1970. The Biological Clock—Two Views, Academic Press, New York.Google Scholar
  14. Bruner, J., and Kennedy, D., 1970. Habituation: Occurrence at a neuromuscular junction. Science, 169, 92–94.PubMedGoogle Scholar
  15. Bullock, T. H., and Horridge, G. A., 1965. Structure and Function of the Nervous System of Invertebrates, Freeman, San Francisco.Google Scholar
  16. Bunning, E., 1967. The Physiological Clock, Springer-Verlag, New York.Google Scholar
  17. Burnett, A. L., and Diehl, N. A., 1964. The nervous system of Hydra. I. Types and distribution of nerve elements. J. Exptl. Zool., 157, 217–226.Google Scholar
  18. Burnett, A. L., Davidson, R., and Wiernick, P., 1963. On the presence of a feeding hormone in the nematocyst of Hydra pirardi. Biol. Bull., 125, 226–233.Google Scholar
  19. Cliffe, E. E., and Waley, S. G., 1958. Effect of analogues of glutathione on the feeding reaction of Hydra. Nature, 182, 804–805.Google Scholar
  20. Davis, L. E., Burnett, A. L., and Haynes, J. F., 1968. Histological and ultrastructural study of the muscular and nervous system in Hydra. II. Nervous system. J. Exptl. Zool., 167, 295–332.Google Scholar
  21. Enright, J. J., 1963. Endogenous tidal and lunar rhythms. Proc. 16th Internat. Congr. Zool., 4, 355–359.Google Scholar
  22. Fleure, H. J., and Walton, C. L., 1907. Notes on the habits of some sea-anemones. Zool. Ang., 31, 212–230.Google Scholar
  23. Gee, W., 1913. Modifiability in the behavior of the California shore-anemone Cribrina xanthogrammic Brandt. Anim. Behay., 3, 305–328.Google Scholar
  24. Hargitt, C. W., 1907. Notes on the behavior of sea-anemones. Biol. Bull., 12, 174–284.Google Scholar
  25. Haynes, J. F., Burnett, A. L., and Davis, L. E., 1968. Histological and ultrastructural study of the muscular and nervous systems in Hydra. I. The muscular system and the mesoglea. J. Exptl. Zool., 167, 283–294.Google Scholar
  26. Hodgson, V. S., and Hodgson, E. S., 1966. Habituation and discrimination in sea anemones. Am. Zoologist, 6, 542.Google Scholar
  27. Horridge, G. A., 1954. The nerves and muscles of medusae. I. Conduction in the nervous system of Aurellia aurita Lamarck. J. Exptl. Biol., 31, 594–600.Google Scholar
  28. Horridge, G. A., 1955. The nerves and muscles of medusae. IV. Inhibition of Aequorea forskalea. J. Exptl. Biol., 32, 642–648.Google Scholar
  29. Horridge, G. A., 1956. The nerves and muscles of medusae. V. Double innervation in Scyphozoa. J. Exptl. Biol., 33, 366–383.Google Scholar
  30. Horridge, G. A. 1959. The nerves and muscles of medusae. VI. The rhythm. J. Exptl. Biol., 36, 72–91.Google Scholar
  31. Horridge, G. A., and MacKay, B., 1962. Naked axons and symmetrical synapses in coelenterates. Quart. J. Microscop. Sci., 103, 531–541.Google Scholar
  32. Hoyle, G., 1960. Neuromuscular activity in the swimming sea anemone. Stomphia coccinea (Muller). J. Exptl. Biol., 37, 671–688.Google Scholar
  33. Jennings, H. S., 1905. Modifiability in behavior. I. Behavior of sea anemones. J. Exptl. Zool., 2, 447–473.Google Scholar
  34. Jennings, H. S., 1906. Behavior of the Lower Organisms, Columbia University Press, New York.Google Scholar
  35. Jha, R. K., and Mackie, G. O., 1967. The recognition, distribution and ultrastructure of hydrozoan nerve elements. J. Morphol., 123, 43–61.Google Scholar
  36. Josephson, R. K., 1961. Colonial responses of hydroid polyps. J. Exptl. Biot., 38, 559–577.Google Scholar
  37. Josephson, R. K., 1965a. Three parallel conducting systems in the stalk of a hydroid. J. Exptl. Biol., 42, 139–152.Google Scholar
  38. Josephson, R. K., 1967. Conduction and contraction in the column of Hydra. J. Exptl. Biol., 47, 179–190.Google Scholar
  39. Josephson, R. K., 1968. Functional components of systems controlling behavior in some primitive animals. In Mesarovic, M. D. (ed.), Systems Theory and Biology, Springer-Verlag, New York, pp. 246–260.Google Scholar
  40. Josephson, R. K., and Mackie, G. O., 1965. Multiple pacemakers and the behavior of the hydroid Tubularia. J. Exptl. Biol., 43, 293–332.Google Scholar
  41. Josephson, R. K., and Macklin, M., 1967. Transepithelial potentials in Hydra. Science, 156, 1629.Google Scholar
  42. Josephson, R. K., and Macklin, M., 1969. Electrical properties of the body wall of Hydra. J. Gen. Physiol., 53, 638–665.Google Scholar
  43. Josephson, R. K., and Uhrich, J., 1969. Inhibition of pacemaker systems in the hydroid Tubularia. J. Exptl. Biol., 50, 1–14.Google Scholar
  44. Kandel, E. R., and Kupfermann, I., 1970. The functional organization of invertebrate ganglia. Ann. Rev. Physiol., 32, 193–268.Google Scholar
  45. Kennedy, D., and Mellon, DeF. M., 1964. Synaptic activation and receptive fields in crayfish interneurons. Comp. Biochem. Physiol., 13, 275–300.PubMedGoogle Scholar
  46. Kupfermann, I., Castellucci, V., Pinsker, H., and Kandel, E. R., 1969. Neuronal correlates of habituation and dishabituation of the gill withdrawal reflex in Aplysia. Science, 167, 1743–1745.Google Scholar
  47. Lenhoff, H. M., and Bovaird, J., 1961. Action of glutamic acid and glutathione analogues on the Hydra glutathione-receptor. Nature, 189, 486–487.PubMedGoogle Scholar
  48. Lentz, T. L., and Barrnett, R. J., 1961. Enzyme histochemistry of hydra. J. Exptl. Zool., 147, 125–150.Google Scholar
  49. Lentz, T. L., and Barrnett, R. J., 1962. The effect of enzyme substrates and pharmacological agents on nematocyst discharge. J. Exptl. Zool., 149, 33–38.Google Scholar
  50. Lentz, T., and Barrnett, R. J., 1965. Fine structure of the nervous system of Hydra. Am. Zoologist, 5, 341–356.Google Scholar
  51. Loeb, J., 1918. Forced Movements, Tropisms, and Animal Conduct, Lippincott, Philadelphia.Google Scholar
  52. Loomis, W. F., 1955. Glutathione control of the specific feeding reactions of Hydra. Ann. N.Y. Acad. Sci., 62, 209–228.Google Scholar
  53. Lowenstein, W. R., and Kanno. Y., 1964. Studies on an epithelial (gland) cell junction. I. Modifications of surface membrane permeability. J. Cell Biol., 22, 565.Google Scholar
  54. Mackie, G. O., 1960. The structure of the nervous system in Velella. Quart. J. Microscop. Sci., 101, 119–131.Google Scholar
  55. Mackie, G. O., 1965. Conduction in the nerve-free epithelia of siphonophores. Am. Zoologist, 5, 439–453.Google Scholar
  56. Mackie, G. O., 1970. Neuroid conduction and the evolution of conducting tissues. Quart. Rev. Biol., 45, 319–332.PubMedGoogle Scholar
  57. Mackie, G. O., and Passano, L. M., 1968. Epithelial conduction of hydramedusae. J. Gen. Physiol., 52, 600–621.Google Scholar
  58. McConnell, C. H., 1932. The development of the ectodermal nerve net in the buds of Hydra. Quart. J. Microscop. Sci., 75, 495–509.Google Scholar
  59. McCullough, C. B., 1965. Pacemaker interaction in Hydra. Am. Zoologist, 5, 499–504.Google Scholar
  60. McFarlane, F. D., 1969. Two slow conduction systems in the sea anemone Calliactis parasitica. J. Exptl. Biol., 51, 377–385.Google Scholar
  61. Mori, S., 1948. Harmony between behavior rhythm and environmental rhythm. Mem. Coll. Sci. Univ. Kyoto Ser. B, 19, 71–74.Google Scholar
  62. Mori, S., 1960. Influence of environmental and physiological factors on the daily rhythmic activity of a sea-pen. Cold Spring Harbor Symp. Quant. Biol., 25, 333–344.PubMedGoogle Scholar
  63. Nagel, W. A., 1894. Experimentelle sinnesphysiologische Untersuchungen an Coelenteraten. Arch. Ges. Physiol., 57, 493–552.Google Scholar
  64. Noda, K., 1969. On the nerve cells of Hydra: a light microscopic study. Annoi. Zool. Jap., 42, 105–112.Google Scholar
  65. Pantin, C. F. A., 1952. The elementary nervous system. Proc. Roy. Soc. London Ser. B. 140, 147–168.Google Scholar
  66. Parker, G. H., 1896. The reactions of Metridium to food and other substances. Bull. Mus. Harvard, 29, 107–119.Google Scholar
  67. Parker, G. H., 1919. The Elementary Nervous System, Lippincott, Philadelphia.Google Scholar
  68. Passano, L. M., and Kass-Simon, G. 1969. Tentacle pulses: A new through conducted coordinating system in Hydra. Am. Zoologist, 9, 11–13.Google Scholar
  69. Passano, L. M., and McCullough, C. B., 1962. The light response and rhythmic potentials of Hydra. Proc. Natl. Acad. Sci., 48, 1376–1382.Google Scholar
  70. Passano, L. M., and McCullough, C. B., 1963. Pacemaker hierarchies controlling the behaviour of hydras. Nature, 199, 1174–1175.PubMedGoogle Scholar
  71. Passano, L. M., and McCullough, C. B., 1964. Coordinating systems and behavior inGoogle Scholar
  72. Hydra. 1. Pacemaker systems of the periodic contractions. J. Exptl. Biol.,41, 643–664.Google Scholar
  73. Passano, L. M., and McCullough, C. B., 1965. Co-ordinating systems and behavior in Hydra. II. The rhythmic potential system. J. Exptl. Biol., 42, 205–231.Google Scholar
  74. Pieron, H., 1908a. De l’influence réciproques des phénomènes respiratoires de du comportement chez certaines Actinies. Compt. Rend. Acad. Sci. Paris, 147, 1407–1410.Google Scholar
  75. Pieron, H., 1908b. Des rythmes engendres par une variation périodique de la teneur en oxygène. Comet. Rend. Soc. Biol., 64, 1020–1022.Google Scholar
  76. Pieron, H., 1910. L’étude expérimentale de l’anticipation adaptive. Compt. Rend. Ass. Franc., 38, 735–739.Google Scholar
  77. Pinsker, H., Kupfermann, I., Castellucci, V., and Kandel, E. R., 1969. Habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science, 167, 1740–1742.Google Scholar
  78. Robson, E. A., 1961a. Some observations on the swimming behaviour of the anemone Stomphia coccinea. J. Exptl. Biol., 38, 343–363.Google Scholar
  79. Robson, E. A., 1961b. The swimming response and its pacemaker system in the anemone Stomphia coccinea. J. Exptl. Biol., 38, 685–694.Google Scholar
  80. Robson, E. A., 1963. The nerve-net of a swimming anemone, Stomphia coccinea. Quart. J. Microscop. Sci., 104, 535–549.Google Scholar
  81. Robson, E. A., 1966. Swimming in Actiniaria. In Reese, W. J. (ed.), The Cnidaria and Their Evolution, Academic Press, New York, pp. 333–360.Google Scholar
  82. Romanes, G. J., 1885. Jelly-fish, Star-fish and Sea-urchins, D. Appleton and Co., New York. Romanes, G. J., 1877. Further observations on the locomotor system of medusae. Phi!. Trans. Roy. Soc. London, 167, 659–752.Google Scholar
  83. Ross, D. M., 1965a. The behavior of sessile coelenterates in relation to some conditioning experiments. Anim. Behay. Suppl., 1, 43–55.Google Scholar
  84. Ross, D. M., 1965. Complex and modifiable behavior patterns in Calliactis and Stomphia. Am. Zoologist, 5, 573–580.Google Scholar
  85. Ross, D. M., and Sutton, L., 1964a. The swimming response of the sea anemone Stomphia coccinea to electrical stimulation. J. Exptl. Biol., 41, 735–749.Google Scholar
  86. Ross, D. M., and Sutton L., 1964. Inhibition of the swimming response by food and nematocyst discharge during swimming in the sea anemone Stomphia coccinea. J. Exptl. Biol., 41, 751–757.Google Scholar
  87. Rushforth, N. B., 1965a. Behavioral studies of the coelenterate Hydra pirardi Brien. Anim. Behay. Suppl., 1, 30–42.Google Scholar
  88. Rushforth, N. B., 1965. Inhibition of contraction responses of Hydra. Am. Zoologist, 5, 505–513.Google Scholar
  89. Rushforth, N. B., 1967. Chemical and physical factors affecting behavior in Hydra: Interactions among factors affecting behavior in Hydra. In Corning, W. C., and Ratner, S. C. (eds.), Chemistry of Learning, Plenum Press, New York.Google Scholar
  90. Rushforth, N. B., 1970. Electrophysiological correlate of habituation in Hydra. Am. Zoologist, 10, 505.Google Scholar
  91. Rushforth, N. B., 1971. Behavioral and electrophysiological studies of Hydra. I. An analysis of contraction pulse patterns. Bio!. Bull., 140, 255–273.Google Scholar
  92. Rushforth, N. B., and Burke, D. S., 1971. Behavioral and electrophysiological studies of Hydra. II. Pacemaker activity of isolated tentacles. Bio!. Bull., 140, 502–519.Google Scholar
  93. Rushforth, N. B., Burnett, A. L., and Maynard, R., 1963. Behavior in Hydra. Contraction responses of Hydra pirardi to mechanical and light stimuli. Science, 139, 760–761.Google Scholar
  94. Segundo, J. P., Takenaka, T., and Encado, H., 1967. Electrophysiology of bulbar reticular neurons. J. Neurophysiol., 30, 1194–1220.PubMedGoogle Scholar
  95. Semai van Gansen, P., 1952. Note sur le système nerveux de l’hydre. Bull. Acad. Roy. Belg. Cl. Sci., 38, 718–735.Google Scholar
  96. Shibley, G. A., 1969. Gastrodermal contractions correlated with rhythmic potentials and prelocomotor bursts in Hydra., 4m. Zoologist, 9, 586.Google Scholar
  97. Spencer, W. A., Thompson, R. F., and Neilson, D. R., Jr., 1966. Response decrement of the flexion reflex in the acute spinal cat and transient restoration by strong stimuli. J. Neurophysiol., 29, 221–239.PubMedGoogle Scholar
  98. Sund, P. N., 1958. A study of the muscular anatomy and swimming behavior of the sea anemone Stomphia coccinea. Quart. J. Microscop. Sci., 99, 401–420.Google Scholar
  99. Tanaka, J., 1966. A study of conditioned response in Hydra. Ann. Anim. Psychol., 16, 37–41.Google Scholar
  100. Tardent, P., and Frei, E., 1969. Reaction patterns of dark-and light-adapted Hydra to light stimuli. Experientia, 25, 265–267.PubMedGoogle Scholar
  101. Thompson, R. F., and Spencer, W. A., 1966. Habituation: A model for the study of the neuronal substrates of behavior. Psycho!. Rev., 73, 16–43.Google Scholar
  102. Thorpe, W. H., 1963. Learning and Instinct in Animals, Methuen, London.Google Scholar
  103. Van der Ghirst, G., 1906. Quelques observations sur les Actinies. Bull. Inst. Gen. Psychol., 6, 267–275.Google Scholar
  104. Wagner, G., 1904. On some movements and reactions of Hydra. Quart. J. Microscop. Sci., 48, 585–622.Google Scholar
  105. Ward, J., 1962. A further investigation of the swimming response of Stomphia coccinea. Am. Zoologist, 2, 567.Google Scholar
  106. Westfall, J. A., 1969. Ultrastructure of synapses in a primitive coelenterate. J. Ultrastruct. Res., 32, 237–246.Google Scholar
  107. Westfall, J. A., 1970. Synapses in a sea anemone, Metridium (Anthozoa). 7th Congr. Internat. Microscop. Electron Grenoble, 717, 718Google Scholar
  108. Westfall, J. A., Yamataka, S., and Enos, P. D., 1970. Ultrastructure of synapses in Hydra. J. Cell Biol., 47, 266.Google Scholar
  109. Westfall, J. A., Yamataka, S., and Enos, P. D., 1971, UItrastructural evidence of polarized synapses in the nerve net of Hydra. J. Cell Biol., 51, 318–323.Google Scholar
  110. Wickelgren, B. G., 1967. Habituation of spinal interneurons. J. Neurophysiol., 30, 1424 1438.Google Scholar
  111. Wilson, D. M., 1959. Long-term facilitation in a swimming sea anemone, J. Exptl. Biol., 36, 526–532.Google Scholar
  112. Wood, R. L., 1959. Intracellular attachment in the epithelium of Hydra as revealed by the electron microscope. Biophys. Biochem. Cytol., 6, 343–352.Google Scholar
  113. Yentsch, C. S., and Pierce, D. S., 1955. A “swimming”anemone from Puget Sound. Science, 122, 1231–1233.PubMedGoogle Scholar
  114. Zubkov, A., and Polikarpov, G. G., 1951. Conditioned reflex in coelenterates. Advan. Mod. Biol. Moscow, 32, 301–302.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Norman B. Rushforth
    • 1
  1. 1.Department of Biology and Department of BiometryCase Western Reserve UniversityClevelandUSA

Personalised recommendations