Skip to main content

Abstract

Although all animals experience an ontogenetic stage when they are unicellular (the fertilized egg), the protozoans remain unicellular throughout life and have most successfully used this condition in the diverse environments in which they are found. While protozoans are usually thought of as being single-celled, they are not a single version of a metazoan cell nor are they generally as simple. It is probably more accurate to designate them as acellular organisms, as animals not divided into cells (Barnes, 1966; Hyman, 1940). Some of the organelles in this phylum (cilia, for example) perform functions taken over by highly specialized cells in metazoans. The term unicellular is also misleading because it tends to obscure the fact that some protozoans are colonial—they exist in multicellular aggregates. Accordingly, the following definition seems appropriate:

“The Protozoa are acellular animals without tissues or organs, existing singly or in colonies of a few to many individuals; such colonies differ from a metazoan in that their components are all alike except when engaged in reproductive activities.” (Hyman, 1940, p. 45)

The characteristic of “acellularity” is the only one applicable to all protozoans, as the diversity and range within the phylum are wide, perhaps due to their multiple origins.

Preparation of this chapter was facilitated by Grant A 0351 from the National Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S., 1963. Protozoan pharmacodynamies: The use of protozoa to study the cellular action of drugs. In Ludvik, J., Lom, J., and Vavra, J. (eds.), Progress in Protozoology, Academic Press, New York, pp. 175–176.

    Google Scholar 

  • Allen, R. D., 1962. Amoeboid movement. Sci. Am. 206, 112–122.

    PubMed  CAS  Google Scholar 

  • Alverdes, F., 1937a. Das Lernvermögen der einzelligen Tiere. Z. Tierpsychol., 1, 35–38.

    Google Scholar 

  • Alverdes, F., 19376. Gewöhnung und Lernen in Verhalten der Tiere. Zool. Anz., 120, 90–95.

    Google Scholar 

  • Alverdes, F., 1939. Zur Psychologie der niederen Tiere. Z. Tierpsychol., 2, 258–264.

    Google Scholar 

  • Anderson, E., 1967. Cytoplasmic organelles and inclusions of protozoa. In Chen, T. T. (ed.), Research in Protozoology, New York, Pergamon Press, pp. 1–40.

    Google Scholar 

  • Applewhite, P. 1968a. Non-local nature of habituation in a rotifer and protozoan. Nature, 217, 287–288.

    Google Scholar 

  • Applewhite, P., 19686. Temperature and habituation in a protozoan. Nature, 219, 91–92. Applewhite, P., 1968c. Retention of habituation in a protozoan improved by low temperature. Nature, 219, 1265–1266.

    Google Scholar 

  • Applewhite, P., 1970a. Habituation in Spirostomum. In Adler, J. (ed.), 10th International Congress for Microbiology, in press.

    Google Scholar 

  • Applewhite, P., 19706. Protein synthesis during protozoan habituation learning. Commun. Behay. Biol., 5, 67–70.

    Google Scholar 

  • Applewhite, P. 1971. Similarities in protozoan and flatworm habituation behavior. Nature, 230,284–285.

    Google Scholar 

  • Applewhite P. and Davis, S., 1969. Metallic ions and habituation in the protozoan Spirostomum. Comp. Biochem. Physiol. 29487–489.

    Google Scholar 

  • Applewhite, P. and Gardner, F. T., 1968. RNA changes during protozoan habituation. Nature, 220,1136–1137.

    Google Scholar 

  • Applewhite, P., and Gardner, F. T., 1970. Protein and RNA synthesis during protozoan habituation after loss of macronuclei and cytoplasm. Physiol. Behay., 5, 377–380.

    Article  CAS  Google Scholar 

  • Applewhite, P., and Gardner, F. T., 1971. A theory of protozoan habituation. Nature, 230, 285–287.

    CAS  Google Scholar 

  • Applewhite, P. and Morowitz, H. J., 1966. The micrometazoa as model systems for studying the physiology of memory. Yale J. Biol. Med., 39,90–105.

    Google Scholar 

  • Applewhite, P., and Morowitz, H. J., 1967. Memory and the microinvertebrates. In Corning, W. C., and Ratner, S. C. (eds.), The Chemistry of Learning: Invertebrate Research, Plenum Press, New York, pp. 329–340.

    Google Scholar 

  • Applewhite, P., Gardner, F. T., and Lapan, E., 1969a. Physiology of habituation learning in a protozoan. Trans. N.Y. Acad. Sci., 31, 842–849.

    Google Scholar 

  • Applewhite, P., Lapan, E., and Gardner, F. T., 19696. Protozoan habituation learning after loss of macronuclei and cytoplasm. Nature, 222, 491–492.

    Google Scholar 

  • Applewhite, P. B., Gardner, F., Foley, D., and Clendenin, M., 1971. Failure to condition Tetrahymena. Scand. J. Psychol., 12, 65–67.

    Article  Google Scholar 

  • Barnes, R. D., 1966. Invertebrate Zoology, Saunders, Philadelphia.

    Google Scholar 

  • Bergström, S. R. 1968a. Induced avoidance behaviour in the protozoa Tetrahymena. Scand. J. Psychol. 9215–219.

    Google Scholar 

  • Bergström, S. R., 1968b. Acquisition of an avoidance reaction to light in the protozoa Tetrahymena. Scand. J. Psychol., 9, 220–224.

    Article  Google Scholar 

  • Bergström, S. R., 1969a. Amount of induced avoidance behaviour to light in the protozoa Tetrahymena as a function of time after training and cell fission. Scand. J. Psychol., 10, 16–20.

    Google Scholar 

  • Bergström, S. R., 19696. Avoidance behaviour to light in the protozoa Tetrahymena. Scand. J. Psychol., 10, 81–88.

    Google Scholar 

  • Bergström, S. R., 1969c. Induced avoidance behaviour to light in the protozoa Tetrahymena. Doctoral dissertation, University of Uppsala.

    Google Scholar 

  • Best, J. B., 1954. The photosensitization of Paramecium aurelia by temperature shock. A study of a reported conditioned response in unicellular organisms. J. Exptl. Zool., 126, 87–100.

    Article  Google Scholar 

  • Bozler, E., 1924. Über die physikalische Erklärung der Schlundfadenströmungen, ein Beitrag zur Theorie der Protoplasmaströmerengen. Z. Vergl. Physiol., 2, 82–90.

    Article  Google Scholar 

  • Bragg, A. N., 1959. Selection of food by protozoa. Turtox News. 17, 41–44.

    Google Scholar 

  • Bramstedt, F., 1935. Dressurversuche mit Paramecium caudatum und Stylonychia mytilus. Z. Vergl. Physiol., 22, 490–516.

    Article  Google Scholar 

  • Brown, F. (ed.), 1950. Selected Invertebrate Types, Wiley, New York.

    Google Scholar 

  • Buchsbaum, R., 1948. Animals Without Backbones, University of Chicago Press, Chicago. Bullock, T. H., and Horridge, G. A., 1965. Structure and Function in the Nervous Systems of Invertebrates, Freeman, San Francisco.

    Google Scholar 

  • Bullock, T. H., and Quarton, G. C., 1966. Simple systems for the study of learning mechanisms. Neurosci. Res. Program Bull., 4, 105–233.

    Google Scholar 

  • Buytendijk, F. J., 1919. Acquisition d’habitudes par des etres unicellulaires. Arch. Néerl. Physiol., 3, 455–468.

    Google Scholar 

  • Byrne, W., 1970. Molecular Approaches to Learning and Memory, Academic Press, New York.

    Google Scholar 

  • Chailakhian, L. M., 1957. On conditioned connections in protozoa and coelenterata. Zh. Vyssh. Nervn. Deiatel., 7, 765–774.

    CAS  Google Scholar 

  • Corning, W. C., 1971a. Recent studies of learning and its biochemical correlates in protozoans and planarians. In Adam, G. (ed.), The Biology of Memory, Plenum Press, New York, pp. 101–119.

    Chapter  Google Scholar 

  • Corning, W. C., 1971b. Conditioning and “transfer of training” in a colonial ciliate: A summary of the work of N. N. Plavilstchikov. J. Biol. Psychol., 13, 39–41.

    Google Scholar 

  • Corning, W. C., and Freed, S., 1968. Planarian behavior and biochemistry, Nature, 219, 1227–1230.

    Article  PubMed  CAS  Google Scholar 

  • Corning, W. C., and Ratner, S. C., 1967. The Chemistry of Learning: Invertebrate Research, Plenum Press, New York.

    Google Scholar 

  • Dabrowska, J., 1956. Tresura Paramecium caudatum, Stentor coeruleus, Spirostomum ambiguum. Nr. Budice Swietne Folia Biol. Polska Akad. Nauk., 4, 77–81.

    Google Scholar 

  • Danisch, F., 1921. Ueber Reizbiologie und Reizempfindlichkeit von Vorticella nebulifera. Z. Allg. Physiol., 19, 133–188.

    CAS  Google Scholar 

  • Davis, M., and Wagner, A. R., 1969. Habituation of the startle response under an incremental sequence of stimulus intensities. J. Comp. Physiol. Psychol., 67, 486.

    Article  PubMed  CAS  Google Scholar 

  • Day, L. M., and Bentley, M., 1911. A note on learning in Paramecium. J. Anim. Behay., 1, 67–73.

    Article  Google Scholar 

  • Dembowski, J., 1950. On conditioned reactions of Paramecium caudatum towards light. Acta Biol. Exptl., 15, 5–17.

    CAS  Google Scholar 

  • Diebschlag, E., 1940. Über die Lernfahigkeit von Paramecium caudatum. Zool. Anz., 11, 17–271.

    Google Scholar 

  • Diller, W. F., 1956. Nuclear behavior in the ciliated protozoa. Bios, 27, 217–234.

    Google Scholar 

  • Eisenstein, E. M., 1967. The use of invertebrate systems for studies on the bases of learning and memory. In Quarton, G. C., Malnechuk, T., and Schmitt, F. (eds), The Neurosciences, Rockefeller Univ. Press, New York, pp. 653–665.

    Google Scholar 

  • French, J. W., 1940. Trial-and-error learning in Paramecium. J. Exptl. Psychol., 26,609–613.

    Google Scholar 

  • Gardner, F. T., and Applewhite, P. B., 1970a. Protein and RNA inhibitors and protozoan habituation. Psychopharmacologia, 16, 430–433.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, F. T., and Applewhite, P. B., 19706. Temperature separation of acquisition and retention in protozoan habituation. Physiol. Behay., 5, 713–714.

    Google Scholar 

  • Gelber, B., 1952. Investigations of the behavior of Paramecium aurelia: I. Modification of behavior after training with reinforcement. J. Comp. Physiol. Psychol., 45, 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Gelber, B., 1954. Investigations of the behavior of Paramecium aurelia: IV. The effect of different training schedules on both young and aging cultures. Am. Psychologist, 9, 374.

    Google Scholar 

  • Gelber, B., 1956a. Investigations of the behavior of Paramecium aurelia: II. Modification of a response in successive generations of both mating types. J. Comp. Physiol. Psychol., 49, 590–593.

    Google Scholar 

  • Gelber, B., 19566. Investigations of the behavior of Paramecium aurelia: 1II. The effect of the presence and absence of light on the occurrence of a response. J. Genet. Psychol., 88, 31–36.

    Google Scholar 

  • Gelber, B., 1957a. Investigations of the behavior of Paramecium aurelia: VI. Reinforcement with three values of training. Am. Psychologist, 12, 428.

    Google Scholar 

  • Gelber, B., 19576. Food or training in paramecium? Science, 126, 1350–1341.

    Google Scholar 

  • Gelber, B., 1958a. Retention in Paramecium aurelia. J. Comp. Physiol. Psychol., 51, 110–115. Gelber, B., 19586. Extinction in Paramecium aurelia. Am. Psychologist, 13, 405.

    Google Scholar 

  • Gelber, B., 1962a. Acquisition in Paramecium aurelia during spaced training. Psycho!. Rec., 12, 165–177.

    Google Scholar 

  • Gelber, B., 19626. Reminiscence and the trend of retention in Paramecium aurelia. Psycho!. Rec., 12,179–192.

    Google Scholar 

  • Gelber, B., 1965. Studies of the behaviour of Paramecium aurelia. Anim. Behay., 13, Suppl. 1, 21–29.

    Google Scholar 

  • Gelber, B., and Rasch, E., 1956. Investigations of the behavior of Paramecium aurelia. V. The effects of autogamy. J. Comp. Physiol. Psychol., 49, 594–599.

    Google Scholar 

  • Grabowski, U., 1939. Experimentelle Untersuchungen ueber das angebliche Lernvermoegen von Paramecium. Z. Tierpsychol., 2, 265–282.

    Article  Google Scholar 

  • Gurowitz, E. M., 1969. The Molecular Basis of Memory, Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Hamilton, T. C., Blair, H. J., and Eisenstein, E. M., 1971. Variety of modifiable behaviors in the protozoan, Spirostomum ambiguum. Biophys. Soc. Abst., 204a.

    Google Scholar 

  • Harden, C. M., unpublished manuscript. Behavior modification of Stentor coeruleus. Hegner, R. W., 1933. Invertebrate Zoology,Macmillan, New York.

    Google Scholar 

  • Herrick, C. J., 1924. Neurological Foundations of Animal Behavior, Holt, New York. Hyman, L., 1940. The Invertebrates: Protozoa Through Ctenophora, McGraw-Hill, New York.

    Google Scholar 

  • Jennings, H. S., 1901. Studies on reactions to stimuli in unicellular organisms. IX. On the behavior of fixed infusoria (Stentor and Vorticella) with special reference to modifiability of protozoan reactions. Am. J. Physiol., 8, 23–60.

    Google Scholar 

  • Jennings, H. S., 1906. The Behavior of Lower Organisms, Columbia University Press, New York.

    Book  Google Scholar 

  • Jensen, D. D., 1955. A critical examination of learning in paramecia, M. A. thesis, University of Nebraska.

    Google Scholar 

  • Jensen, D. D., 1957a. Experiments on “learning” in paramecia. Science, 125, 191–192. Jensen, D. D., 1957b. More on “learning” in paramecia. Science, 126, 1341–1342.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, D. D., 1959. A theory of the behavior of Paramecium aurelia and behavioral effects of feeding, fission, and ultraviolet microbeam irradiation. Behaviour, 15, 82–122.

    Article  Google Scholar 

  • Jensen, D. D., 1965. Paramecia, planaria, and pseudo-learning. Anim. Behay., 13, Suppl. 1, 9–20.

    Google Scholar 

  • Jeon, K. W., Lorch, I. J., and Danielli, J. F., 1970. Reassembly of living cells from dissociated components. Science, 167, 1626–1627.

    Article  PubMed  CAS  Google Scholar 

  • Katz, M., and Deterline, W. A., 1958. Apparent learning in the paramecium. J. Comp. Physiol. Psychol., 51, 243–247.

    Article  CAS  Google Scholar 

  • Kellogg, W. N., 1958. Worms, dogs, and paramecia, Science, 127.

    Google Scholar 

  • Kinastowski, W., 1963a. Der Einfluss der mechanischen Reize auf die Kontraktilitat von Spirostomum ambiguum. Acta Protozool., I, 201–222.

    Google Scholar 

  • Kinastowski, W., 19636. Das Problem “des Lernes” bei Spirostomum ambiguum. Acta Protozool., 1, 223–236.

    Google Scholar 

  • Kindleman, P., Applewhite, P., and Morowitz, H. J., 1968. Capacitive detection of very small aquatic animals. Rev. Sci. Instr., 39, 121–123.

    Google Scholar 

  • Kohler, 0., 1939. Diskussion zu den Vortragen Alverdes-Bramstedt. Verh. Deutsch. Zool. Ges. 41.

    Google Scholar 

  • Lachman, S. J., and Havlena, J. M., 1962. Reactive inhibition in the Paramecium. J. Comp. Physiol. Psycho!., 55, 972–973.

    Article  Google Scholar 

  • Leedale, G. F., 1966. Euglena: A new look with the electron microscope. Advan. Sci., May, 22-37.

    Google Scholar 

  • Lepley, W., and Rice, G. E., 1952. Behavior variability in paramecia as a function of guided act sequences. J. Comp. Physiol. Psychol., 45, 283–286.

    Article  CAS  Google Scholar 

  • Machemer, H. von, 1966a. Versuche zur Frage nach der Dressierbarkeit hypotricher Ciliaten unter Einsatz hoher Individuenzahlen. Z. Tierpsychol. 6, 641–654.

    Google Scholar 

  • Machemer, H. von, 19666. Erschütterungsbedingte Sensibilisierung gegenüber rauhem Untergrund bei Stylonychia mytilus. Arch. Protistenk., 109,245–256.

    Google Scholar 

  • Manwell, R. D. 1961. Introduction to Protozoology,St. Martins Press, New York.

    Google Scholar 

  • Mast, S. 0., 1926. Structure, movement, locomotion and stimulation in Amoeba. J. Morphol. Physiol., 41, 347–425.

    Google Scholar 

  • Mast, S. O., and Pusch, L. C., 1924. Modification of response in Amoeba. Biol. Bull., 46, 55–60.

    Google Scholar 

  • McConnell, J. V., 1966. Comparative physiology: Learning in invertebrates. Ann. Rev. Physiol., 28. 107.

    Google Scholar 

  • Metalnikow, S., 1912. Contributions à l’étude de la digestion intracellulaire chez les protozoaires. Arch. Zool. Exp. Gén., 49, 373–498.

    Google Scholar 

  • Metalnikow, S., 1913a. Sur la faculté des infusoires d’apprendre à choisir la nourriture. Compt. Rend. Soc. Biol. Paris, 74, 701–703.

    Google Scholar 

  • Metalnikow, S., 1913b. Comment les infusoires se comportent vis-à-vis des mélanges de diverses matières colorantes. Compt. Rend. Soc. Biol. Paris, 74, 704–705.

    Google Scholar 

  • Metalnikow, S., 1914. Les infusoires, peuvent-ils apprendre à choiser leur nourriture? Arch. Protistenk., 34, 60–78.

    Google Scholar 

  • Metalnikow, S., 1916. Les reflexes chez les protozoaires. Compt. Rend. Soc. Biol. Paris, 79, 80–82.

    Google Scholar 

  • Mirsky, A. F., and Katz, M. S., 1958. Avoidance “conditioning” in paramecia. Science, 127, 1498–1499.

    Google Scholar 

  • Naitoh, Y., 1966. Reversal response elicited in nonbeating cilia of paramecium by membrane depolarization. Science, 154, 660–662.

    Article  PubMed  CAS  Google Scholar 

  • Naitoh, Y., and Eckert, R., 1969a. Ionic mechanisms controlling behavioral responses of paramecium to mechanical stimulation. Science, 164, 963–965.

    Article  PubMed  CAS  Google Scholar 

  • Naitoh, Y., and Eckert, R., 19696. Ciliary orientation: Controlled by cell membrane or by intracellular fibrils? Science, 166, 1633–1635.

    Google Scholar 

  • Osborn, D. and Eisenstein, E. M., unpublished. The distribution of calcium and other elements in the ciliated protozoan, Spirostomum ambiguum.

    Google Scholar 

  • Osborn, D. Hsung, J. C., and Eisenstein, E. M., in press. The involvement of calcium in contractility in the ciliated protozoan, Spirostomum ambiguum. Commun. Behay. Biol. Osborn, D., Blair, H. J., Thomas, J., and Eisenstein, E. M., unpublished. The effects of mechanical and electrical stimulation on habituation in the ciliated protozoan, Spirostomum ambiguum.

    Google Scholar 

  • Plavilstchikov, N. N., 1928. Observations sur 1’ excitabilité des infusoires. Russ. Ark. Protist., 7, 1–24.

    Google Scholar 

  • Poskocil, A., 1966. If you’re a paramecium, can you learn? A query. Worm Runner’s Digest, 8, 31–42.

    Google Scholar 

  • Rabin, B. M. and Hertzler, D. R., 1965. Replications of two experiments on reactive inhibition in paramecia. Worm Runner’s Digest7, 46–50.

    Google Scholar 

  • Razran, G. H. S., 1933. Conditioned responses in animals other than dogs. Psychol. Bull., 30, 261–324.

    Google Scholar 

  • Schlieper, C., 1940. Praktikum der Zoophysiologie,Jena.

    Google Scholar 

  • Sgonina, K., 1939. Vergleichende Untersuchungen über die Sensibilisierung und den bedingten Reflex. Z. Tierpsychol. 3, 224–247.

    Article  Google Scholar 

  • Smith, S., 1908. Limits of educability in Paramecium. J. Comp. Neurol. Psychol., 18, 499510.

    Google Scholar 

  • Soest, H., 1937. Dressuryersuche mit Ciliaten und rhabdocoelen Turbellarien. Z. Vergl. Physiol., 24, 720–748.

    Article  Google Scholar 

  • Sonneborn, T. M., 1950. Paramecium in modern biology. Bios, 21, 31.

    Google Scholar 

  • Telfer, W. H., and Kennedy, D., 1965. The Biology of Organisms, Wiley, New York. Thorpe, W. H., 1963. Learning and Instinct in Animals, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Tschakhotine, S., 1938. Réactions “conditionées” par microponction ultraviolette dans le comportement d’une cellule isolé (Paramecium caudatum). Arch. Inst. Prophylac. Paris, 10, 119–131 (not seen).

    Google Scholar 

  • Ungar, G., 1970. Molecular Mechanisms in Memory and Learning, Plenum Press, New York. Warden, C. J., Jenkins, T. N., and Warner, L. H., 1940. Comparative Psychology, Vol. II: Plants and Invertebrates, Ronald Press, New York.

    Google Scholar 

  • Wawrzynczyk, S., 1937a. Badhnia nad pamiecia Spirostomum ambiguum major. Acta Biol. Exptl., 11, 57–77.

    Google Scholar 

  • Wawrzynczyk, S., 19376. Reakcje Paramecium caudatum na bodzce swietlne. Tray. Soc. Sci. Wilno, 12, 1–28.

    Google Scholar 

  • Weiss, P., 1961. The concept of perpetual neuronal growth and proximodistal substance convection. In Kety, S. S., and Elkes, J. (eds.), Regional Neurochemistry, Pergamon Press, New York, pp. 220–242.

    Google Scholar 

  • Weiss, P., 1969. “Panta’ Rhei”-and so flow our nerves. Am. Scientist, 57, 287–305. Wichterman, R., 1953. The Biology of Paramecium, Blakiston, New York.

    Google Scholar 

  • Wichterman, R. 1953. The Biology of Parametric, Blakiston, New York.

    Google Scholar 

  • Wood, D. C., 1970a. Parametric studies of the response decrement produced by mechanical stimuli in the protozoan, Stentor coeruleus. J. Neurobiol. 1, 345–360.

    Article  Google Scholar 

  • Wood, D. C., 1970b. Electrophysiological studies of the protozoan, Stentor coeruleus. J. Neurobiol., 1, 363–377.

    Article  PubMed  CAS  Google Scholar 

  • Wood, D. C., 1970c. Electrophysiological correlates of the response decrement produced by mechanical stimuli in the protozoan, Stentor coeruleus, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Corning, W.C., von Burg, R. (1973). Protozoa. In: Corning, W.C., Dyal, J.A., Willows, A.O.D. (eds) Invertebrate Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3006-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3006-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3008-0

  • Online ISBN: 978-1-4684-3006-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics