Advertisement

Electrochemical Processes in Glow Discharge at the Gas-Solution Interface

  • A. Hickling

Abstract

The term electrolysis is conventionally applied to chemical changes brought about by passing an electric current between conducting electrodes dipping into a liquid phase containing ions, where the changes can be satisfactorily explained by electron transfer between the ions and the electrodes. If, however, the liquid phase is itself made an electrode and an electrical glow-discharge is passed to it from a conductor located in the gas space above the surface, a completely different situation arises in which novel chemical reactions can be brought about in the liquid phase, and this process is referred to as glow-discharge electrolysis (GDE). It is worth emphasizing that it differs fundamentally from chemical decomposition brought about by electrical discharge between metallic electrodes in gases at low pressures, since in GDE, the reactions of interest are initiated in the liquid phase, and the quantity of electricity passed rather than electrical power dissipated is found to be the governing variable, as in conventional electrolysis.

Keywords

Glow Discharge Liquid Surface Electrochemical Process Liquid Ammonia Radiation Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gubkin, Ann. Physik 32[III] (1887) 114.Google Scholar
  2. 2.
    K. Klüpfel, Ann. Physik 16[IV] (1905) 574.CrossRefGoogle Scholar
  3. 3.
    A. Makowetsky, Z. Elektrochem. 17 (1911) 217.Google Scholar
  4. 4.
    A. Klemenc et al, Z. Elektrochem. 20 (1914) 485Google Scholar
  5. 4a.
    A. Klemenc et al, Z. Elektrochem. 37 (1931) 742.Google Scholar
  6. 4b.
    A. Klemenc et al, Z. Physik. Chem. 130 (1927) 378Google Scholar
  7. 4c.
    A. Klemenc et al, Z. Physik. Chem. 154 (1931) 385Google Scholar
  8. 4d.
    A. Klemenc et al, Z. Physik. Chem. 166 (1933) 343Google Scholar
  9. 4e.
    A. Klemenc et al, Z. Physik. Chem. 27B (1935) 369Google Scholar
  10. 4f.
    A. Klemenc et al, Z. Physik. Chem. 179 (1937) 1Google Scholar
  11. 4g.
    A. Klemenc et al, Z. Physik. Chem. 182 (1938) 91Google Scholar
  12. 4h.
    A. Klemenc et al, Z. Physik. Chem. 40B (1938) 252Google Scholar
  13. 4i.
    A. Klemenc et al, Z. Physik. Chem. 183 (1938) 217, 297Google Scholar
  14. 4j.
    A. Klemenc et al, Z. Anorg. Allgem. Chem. 240 (1939) 167.CrossRefGoogle Scholar
  15. 4k.
    A. Klemenc et al, Monatsh. 75 (1944) 42CrossRefGoogle Scholar
  16. 4l.
    A. Klemenc et al, Monatsh. 76 (1946) 38CrossRefGoogle Scholar
  17. 4m.
    A. Klemenc et al, Monatsh. 78 (1948) 243CrossRefGoogle Scholar
  18. 4n.
    A. Klemenc et al, Monatsh. 81 (1950) 122CrossRefGoogle Scholar
  19. 4o.
    A. Klemenc et al, Monatsh. 82 (1951) 708 ; 869, 1041;CrossRefGoogle Scholar
  20. 4p.
    A. Klemenc et al, Monatsh. 84 (1953) 365, 498, 1053;CrossRefGoogle Scholar
  21. 4q.
    A. Klemenc et al, Monatsh. 85 (1954) 47.CrossRefGoogle Scholar
  22. 4r.
    A. Klemenc et al, Chimia (Aarau) 6 (1952) 177.Google Scholar
  23. 4s.
    A. Klemenc et al, Z. Elektrochem. 56 (1952) 198, 634, 917;Google Scholar
  24. 4t.
    A. Klemenc et al, Z. Elektrochem. 57 (1953) 615.Google Scholar
  25. 5.
    S. Glasstone and A. Hickling, J. Chem. Soc. (1934) 1772. R. A. Davies and A. Hickling, J. Chem. Soc. (1952) 3595.Google Scholar
  26. 5a.
    A. R. Denaro and A. Hickling, J. Electrochem. Soc. 105 (1958) 265.CrossRefGoogle Scholar
  27. 5b.
    A. Hickling and M. D. Ingram, J. Electroanal. Chem. 8 (1964) 65.CrossRefGoogle Scholar
  28. 5a.
    A. Hickling and G. R. Newns, Proc. Chem. Soc. (1959) 368; J. Chem. Soc. (1961) 5177, 5186. A. Hickling and M. D. Ingram, J. Electroanal. Chem. 8 (1964) 65.CrossRefGoogle Scholar
  29. 5b.
    A. Hickling and J. K. Linacre, J. Chem. Soc. (1954) 711.Google Scholar
  30. 6.
    W. R. Cousins, Z. Physik. Chem. 4B (1929) 440.Google Scholar
  31. 6a.
    W. Braunbek, Z. Physik 91 (1934) 184.CrossRefGoogle Scholar
  32. 6b.
    F. Fichter and K. Kestenholz, Helv. Chim. Acta 23 (1940) 209.CrossRefGoogle Scholar
  33. 6c.
    A. Muta et al., J. Electrochem. Soc. Japan 17 (1949) 74, 113, 202, 235, 265, 298;Google Scholar
  34. 6d.
    A. Muta et al., J. Electrochem. Soc. Japan 18 (1950) 17, 82.Google Scholar
  35. 6e.
    M. Haïssinsky and A. Coche, J. Chim. Phys. 51 (1954) 581.Google Scholar
  36. 6f.
    E. H. Brown, W. D. Wilhide, and K. L. Elmore, J. Org. Chem. 27 (1962) 3698.CrossRefGoogle Scholar
  37. 6g.
    A. Banege-Nia, F. Basquin, and G. Morand, Compt. Rend. 258 (1964) 4521.Google Scholar
  38. 6h.
    A. Banege-Nia, D. Kaspar, and G. Morand, Compt. Rend. 258 (1964) 5213.Google Scholar
  39. 6a.
    Z. Sternberg, in Proc. Int. Conf. Ionization Phenomena Gases, 3rd, Venice (1957), p. 1061.Google Scholar
  40. 6b.
    G. H. Cady, H. J. Emeleus, and B. Tittle, J. Chem. Soc. (1960) 4138.Google Scholar
  41. 6c.
    B. S. R. Sastri, J. Sci. Ind. Res. (India) 19B (1960) 317.Google Scholar
  42. 6d.
    N. Thon, Compt. Rend. 197 (1933) 1114.Google Scholar
  43. 6e.
    A. Dewhurst, J. F. Flagg, and P. K. Watson, J. Electrochem. Soc. 106 (1959) 366.CrossRefGoogle Scholar
  44. 7.
    P. De Beco, Compt. Rend. 207 (1938) 623;Google Scholar
  45. 7a.
    P. De Beco, Compt. Rend. 208 (1939) 797.Google Scholar
  46. 7b.
    P. De Beco, Bull. Soc. Chim. France 12 (1945) 779, 789, 795.Google Scholar
  47. 7c.
    N. A. Goryunova and V. I. Pavlov, Zh. Obshchei Khim. 23 (1953) 1253.Google Scholar
  48. 8.
    A. Hickling and M. D. Ingram, Trans. Faraday Soc. 60 (1964) 783.CrossRefGoogle Scholar
  49. 9.
    K. O. Hough and A. R. Denaro, J. Sci. Instr. 43 (1966) 488.CrossRefGoogle Scholar
  50. 10.
    D. E. Couch and A. Brenner, J. Electrochem. Soc. 106 (1959) 628.CrossRefGoogle Scholar
  51. 11.
    H. H. Kellogg, J. Electrochem. Soc. 97 (1950) 133.CrossRefGoogle Scholar
  52. 12.
    H. Fizeau and L. Foucault, Compt. Rend. 18 (1844) 860.Google Scholar
  53. 13.
    M. M. Lagrange and M. Hoho, Compt. Rend. 116 (1893) 575.Google Scholar
  54. 14.
    M. Hoho, Elec. Rev. 104 (1929) 185.Google Scholar
  55. 14a.
    I. Z. Yasnogorodskii, Avto. Trakt. Prom. 6 (1954) 21 ;Google Scholar
  56. 14b.
    I. Z. Yasnogorodskii, Chem. Abs. 48 (1954) 12586.Google Scholar
  57. 14c.
    S. Owaku and K. Kuroyanagi, J. Japan. Inst. Metals 20 (1956) 63.Google Scholar
  58. 14d.
    T. Sato and H. Mii, Rep. Gov. Ind. Res. Inst. Nagoya 5 (1956) 313, 415, 586;Google Scholar
  59. 14e.
    T. Sato and H. Mii, Rep. Gov. Ind. Res. Inst. Nagoya 6 (1957) 179, 338, 610.Google Scholar
  60. 15.
    A. Wehnelt, Elektrotech. Z. 20 (1899) 76.Google Scholar
  61. 16.
    W. J. Humphreys, Phys. Rev. 9 (1899) 33.Google Scholar
  62. 17.
    A. Klemenc, Monatsh. 76 (1946) 38.CrossRefGoogle Scholar
  63. 17a.
    R. A. Davies and A. Hickling, J. Chem. Soc. (1952) 3595.Google Scholar
  64. 18.
    A. R. Denaro, private communication.Google Scholar
  65. 19.
    A. R. Denaro and A. Hickling, J. Electrochem. Soc. 105 (1958) 265.CrossRefGoogle Scholar
  66. 20.
    A. R. Denaro and P. A. Owens, Electrochim. Acta 13 (1968) 157.CrossRefGoogle Scholar
  67. 21.
    A. Klemenc, Z. Anorg. Allgem. Chem. 240 (1939) 167.CrossRefGoogle Scholar
  68. 22.
    F. Fichter and K. Kestenholz, Helv. Chim. Acta 23 (1940) 209.CrossRefGoogle Scholar
  69. 23.
    A. Klemenc and H. F. Hohn, Z. Physik. Chem. 154A (1931) 385;Google Scholar
  70. 23a.
    A. Klemenc and H. F. Hohn, Z. Physik. Chem. 166A (1933) 343.Google Scholar
  71. 24.
    A. Klemenc, Monatsh. 81 (1950) 122.CrossRefGoogle Scholar
  72. 25.
    A. Klemenc, Z. Elektrochem. 56 (1953) 694.Google Scholar
  73. 26.
    G. H. Gore and A. Hickling, unpublished work.Google Scholar
  74. 27.
    E. H. Brown, W. D. Wilhide, and K. L. Elmore, J. Org. Chem. 27 (1962) 3698.CrossRefGoogle Scholar
  75. 28.
    J. F. Woodman, United States Patent (1953) 2,632,729.Google Scholar
  76. 29.
    A. Bradley and J. P. Hammes, J. Electrochem. Soc. 110 (1963) 15.CrossRefGoogle Scholar
  77. 29a.
    A. R. Denaro, P. A. Owens, and A. Crawshaw, European Polymer J. 4 (1968) 93.CrossRefGoogle Scholar
  78. 30.
    A. Hamilton and M. D. Ingram, private communication.Google Scholar
  79. 31.
    A. Hickling and J. V. Shennan, unpublished work.Google Scholar
  80. 32.
    A. Yokohata and S. Tsuda, Bull. Chem. Soc. Japan 39 (1966) 46, 53.Google Scholar
  81. 33.
    V. I. Pavlov, Compt. Rend. Acad. Sci. U.S.S.R. 43 (1944) 236, 383, 385.Google Scholar
  82. 34.
    A. O. Allen, The Radiation Chemistry of Waterand Aqueous Solutions, Van Nostrand Company, New York, 1961.Google Scholar
  83. 34a.
    A. J. Swallow, Radiation Chemistry of Organic Compounds, Pergamon Press, London, 1960.Google Scholar
  84. 35.
    A. Von Engel, Ionized Gases, 2nd ed., Clarendon Press, Oxford, 1965.Google Scholar
  85. 36.
    H. A. Barton and J. H. Bartlett, Phys. Rev. 31 (1928) 823.CrossRefGoogle Scholar
  86. 36a.
    H. D. Smyth and D. W. Mueller, Phys. Rev. 43 (1933) 116.CrossRefGoogle Scholar
  87. 36b.
    M. M. Mann, A. Hustrulid, and J. T. Tate, Phys. Rev. 58(1940)340.CrossRefGoogle Scholar
  88. 37.
    R. M. Chaudrhi and M. L. Oliphant, Proc. Roy. Soc. 137A (1932) 662.Google Scholar
  89. 38.
    W. D. Davis and T. A. Vanderslice, Phys. Rev. 131 (1963) 219.CrossRefGoogle Scholar
  90. 39E.
    J. Hart, Ann. Rev. Nuclear Sci. 15 (1965) 125.CrossRefGoogle Scholar
  91. 40.
    M. Anbar and P. Neta, Int. J. Appl. Radiation Isotopes 16 (1965) 227.CrossRefGoogle Scholar
  92. 41.
    A. Hickling and G. R. Newns, J. Chem. Soc. (1961) 5177.Google Scholar
  93. 42.
    D. Cleaver, E. Collinson, and F. S. Dainton, Trans. Faraday Soc. 56 (1960) 1640.CrossRefGoogle Scholar
  94. 43.
    D. C. Walker, Quart. Rev. Chem. Soc. 21 (1967) 79.CrossRefGoogle Scholar
  95. 44.
    F. K. McTaggart, Plasma Chemistry in Electrical Discharges, p. 199, Elsevier Publishing Co., London, 1967.Google Scholar
  96. 45.
    A. Hickling and G. R. Newns, British Patent, (1962) 896, 113.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • A. Hickling
    • 1
  1. 1.Department of Inorganic, Physical, and Industrial Chemistry, The Donnan LaboratoriesThe University of LiverpoolLiverpoolEngland

Personalised recommendations