Advertisement

The Mechanism of Charge Transfer from Metal Electrodes to Ions in Solution

  • Dennis B. Matthews
  • John O’M. Bockris

Abstract

The essential distinguishing element of electrode, compared with chemical, kinetics is the characteristic dependence of electrode reaction rates on the electrode potential. The basic theory of this dependence is, however, one of the less developed areas of electrode kinetics. Two facts are outstanding: (i) at 25°C, the symmetry factor β is frequently close to 1/2 ; (ii) the symmetry factor is independent of electrode potential over large ranges of potential, though it varies with it at the highest current densities. Second-order dependencies of β on temperature, solution concentration, and solution composition are issues concerning which there are as yet insufficient data to justify further theoretical development.

Keywords

Charge Transfer Electrode Potential Separation Factor Electron Tunneling Electronic Work Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Parsons in Modem Aspects of Electrochemistry, Vol. 1, Chapter 3, Ed., J. O’M. Bockris, Butterworths, London (1954).Google Scholar
  2. 2.
    R. Parsons, Surface Sci. 2 (1964) 418.Google Scholar
  3. 3.
    R. W. Gurney, Proc. Roy. Soc. (London) A134 (1931) 137.Google Scholar
  4. 4.
    F. P. Bowden, Proc. Roy. Soc. (London) A125 (1929) 446.Google Scholar
  5. 5.
    M. L. E. Oliphant and P. B. Moon, Proc. Roy. Soc. (London) A127 (1930) 388.Google Scholar
  6. 6.
    G. Wentzel, Z. Physik 39 (1926) 518.Google Scholar
  7. 6a.
    H. A. Kramers, Z. Physik 39 (1926) 828.Google Scholar
  8. 6.
    b L. Brillouin, Compt. Rend. 183 (1926) 24.Google Scholar
  9. 7.
    J. A. V. Butler, Proc. Roy. Soc. (London) A157 (1936) 423.Google Scholar
  10. 8.
    J. Horiuti and M. Polanyi, Acta Physicochim. URSS 16 (1942) 169.Google Scholar
  11. 9.
    St. G. Christov, Z. Electrochem. 62 (1958) 567.Google Scholar
  12. 10.
    J. O’M. Bockris, Nature 159 (1947) 539.Google Scholar
  13. 11.
    B. E. Conway and J. O’M. Bockris, J. Chem. Phys. 26 (1957) 532.Google Scholar
  14. 12.
    D. B. Matthews, Ph.D. Thesis, University of Pennsylvania (1965).Google Scholar
  15. 13.
    J. A. V. Butler, Electrocapillarity, Methuen and Co., London (1940).Google Scholar
  16. 14.
    P. Delahay, Double Layer and Electrode Kinetics, Interscience Publishers, New York (1965), p. 173.Google Scholar
  17. 15.
    B. E. Conway, Progress in Reaction Kinetics, Vol. 4, Ed., G. Porter, Pergamon Press, New York (1967), Chapter 10.Google Scholar
  18. 16.
    J. O’M. Bockris, Trans. Faraday Soc. 43 (1947) 417.Google Scholar
  19. 17.
    D. B. Matthews, J. Electrochem. Soc. 113 (1966) 1109.Google Scholar
  20. 18.
    R. Parsons, Trans. Faraday Soc. 54 (1958) 1053.Google Scholar
  21. 19.
    R. Parsons and J. O’M. Bockris, Trans. Faraday Soc. 47 (1951) 914.Google Scholar
  22. 20.
    O. A. Essin and V. Kozheurov, Acta Physicochem. 16 (1942) 169.Google Scholar
  23. 21.
    J. O’M. Bockris and D. E. Matthews, Proc. Roy. Soc. (London) A292 (1966) 479.Google Scholar
  24. 22.
    H. Gerischer, Z. Physik. Chem. (Frankfurt) 26 (1960) 223.Google Scholar
  25. 23.
    H. Gerischer, Z. Physik. Chem. (Frankfurt) 26 (1960) 325.Google Scholar
  26. 24.
    H. Gerischer, Z. Physik. Chem. (Frankfurt) 27 (1961) 48.Google Scholar
  27. 25.
    F. Seitz, Modern Theory of Solids, McGraw-Hill Book Co., New York (1940).Google Scholar
  28. 26.
    S. E. B. Randies, Trans. Faraday Soc. 48 (1952) 828.Google Scholar
  29. 27.
    A. R. Despic and J. O’M. Bockris, J. Chem. Phys. 32 (1960) 389.Google Scholar
  30. 28.
    L. Amdur, J. Chem. Phys. 17 (1949) 844.Google Scholar
  31. 29.
    F. Hund, Z. Physik. 32 (1925) 1.Google Scholar
  32. 30.
    J. O’M. Bockris, M. A. V. Devanathan, and K. Muller, Proc. Roy. Soc. (London) A274 (1963) 55.Google Scholar
  33. 31.
    T. N. Andersen and J. O’M. Bockris, Electrochim. Acta 9 (1964) 347.Google Scholar
  34. 32.
    J. O’M. Bockris and D. B. Matthews, J. Chem. Phys. 44 (1966) 298.Google Scholar
  35. 33.
    E. A. Moelwyn-Hughes, Physical Chemistry, Pergamon Press, London and New York (1961).Google Scholar
  36. 34.
    O. Klein and E. Lange, Z. Elektrochem. 43 (1937) 570.Google Scholar
  37. 35.
    J. E. B. Randies, Trans. Faraday Soc. 52 (1956) 1573.Google Scholar
  38. 36.
    R. A. Marcus, J. Chem. Phys. 24 (1956) 966.Google Scholar
  39. 37.
    R. A. Marcus, J. Chem. Phys. 26 (1957) 867.Google Scholar
  40. 38.
    N. S. Hush, J. Chem. Phys. 28 (1958) 962.Google Scholar
  41. 39.
    N. S. Hush, Trans. Faraday Soc. 57 (1961) 557.Google Scholar
  42. 40.
    J. O’M. Bockris and R. Parsons, Trans. Faraday Soc. 45 (1949) 916.Google Scholar
  43. 41.
    B. E. Conway and J. O’M. Bockris, Can. J. Chem. 35 (1957) 1124.Google Scholar
  44. 42.
    J. O’M. Bockris and S. Srinivasan, J. Electrochem. Soc. 111 (1964) 844.Google Scholar
  45. 43.
    J. O’M. Bockris and S. Srinivasan, J. Electrochem. Soc. 111 (1964) 853.Google Scholar
  46. 44.
    B. E. Conway and J. O’M. Bockris, Electrochim. Acta 3 (1961) 340.Google Scholar
  47. 45.
    H. Genscher, Z. Elektrochem. 62 (1958) 256.Google Scholar
  48. 46.
    J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 1, Ed., J. O’M. Bockris, Butterworths Scientific Publications, London (1954), Chapter 4.Google Scholar
  49. 47.
    V. G. Levich, Advances in Electrochemistry and Electrochemical Engineering, Vol. 4, Ed., P. Delahay and C. W. Tobias, Interscience Publishers, New York, (1966), p. 249.Google Scholar
  50. 48.
    R. A. Marcus, Annual Rev. Phys.-Chem. 15 (1964) 155.Google Scholar
  51. 49.
    J. O’M. Bockris, Modern Aspects of Electrochemisty, Vol. 1, Ed., J. O’M. Bockris, Butterworths Scientific Publications, London (1954), p. 65.Google Scholar
  52. 50.
    C. Zener, Proc. Roy. Soc. (London) A137 (1932) 696Google Scholar
  53. 50a.
    C. Zener, Proc. Roy. Soc. (London) A140 (1933) 660.Google Scholar
  54. 51.
    R. A. Marcus, J. Chem. Phys. 1A (1956) 966Google Scholar
  55. 51a.
    R. A. Marcus, J. Chem. Phys. 26 (1957); 867Google Scholar
  56. 51b.
    R. A. Marcus, Trans. N.Y. Acad. Sci. 19 (1957) 423Google Scholar
  57. 51c.
    R. A. Marcus, J. Chem. Phys. 38 (1963) 1858Google Scholar
  58. 51d.
    R. A. Marcus, J. Chem. Phys. 39 (1963) 1734.Google Scholar
  59. 52.
    R. A. Marcus, J. Chem. Phys. 38 (1963) 1858Google Scholar
  60. 52a.
    R. A. Marcus, J. Chem. Phys. 39 (1963) 1734Google Scholar
  61. 52b.
    R. A. Marcus, Can. J. Chem. 37 (1959) 155Google Scholar
  62. 52c.
    R. A. Marcus, Transactions of the Symposium on Electrode Processes, Ed., E. Yeager, John Wiley and Sons, New York (1961), p. 239Google Scholar
  63. 52d.
    R. A. Marcus, J. Phys. Chem. 67 (1963) 853.Google Scholar
  64. 53.
    R. A. Marcus, J. Chem. Phys. 43 (1965) 679.Google Scholar
  65. 54.
    R. A. Marcus, Disc. Faraday Soc. 29 (1960) 21Google Scholar
  66. 54a.
    R. A. Marcus, J. Phys. Chem. 67 (1963) 853.Google Scholar
  67. 55.
    R. Parsons and E. Passeron, J. Electroanal. Chem. 12 (1966) 524.Google Scholar
  68. 56.
    R. A. Marcus, J. Chem. Phys. 41 (1964) 264.Google Scholar
  69. 57.
    V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR 133 (1960) 158Google Scholar
  70. 57a.
    V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR 133 (1960) 1368Google Scholar
  71. 57b.
    V. G. Levich and R. R. Dogonadze, Coll. Czech. Chem. Commun. 25 (1961) 193Google Scholar
  72. 57c.
    V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR 142 (1962) 1108.Google Scholar
  73. 58.
    R. R. Dogonadze and Y. A. Chizmadzhev, Dokl. Akad. Nauk. SSSR 144 (1962) 1077;Google Scholar
  74. 58a.
    R. R. Dogonadze and Y. A. Chizmadzhev, Dokl. Akad. Nauk. SSSR 145 (1962) 849;Google Scholar
  75. 58b.
    R. R. Dogonadze and Y. A. Chizmadzhev, Dokl. Akad. Nauk. SSSR 150 (1963) 333.Google Scholar
  76. 59.
    J. C. Slater, Phys. Rev. 36 (1930) 57.Google Scholar
  77. 60.
    St. G. Christov, Ann. de VUniv. Sofia Fac. Phys. Math. XLII (1945/46) 2, 69;Google Scholar
  78. 60a.
    St. G. Christov, Z. Electrochem. 62 (1958) 567.Google Scholar
  79. 61.
    St. G. Christov, Z. Phys. Chem. 212 (1959) 40Google Scholar
  80. 61a.
    St. G. Christov, Z. Elektrochem. 64 (1960) 840Google Scholar
  81. 61b.
    St. G. Christov, Dokl. Akad. Nauk SSSR 125 (1959) 143Google Scholar
  82. 61c.
    St. G. Christov, Z. Phys. Chem. 214 (1960) 40.Google Scholar
  83. 62.
    St. G. Christov, Electrochim Acta 4 (1961) 194Google Scholar
  84. 62a.
    St. G. Christov, Electrochimica Acta 4 (1961) 306.Google Scholar
  85. 63.
    B. E. Conway, Can. J. Chem. 37 (1959) 178.Google Scholar
  86. 64.
    B. E. Conway and M. Salomon, J. Phys. Chem. 68 (1964) 2009.Google Scholar
  87. 65.
    B. E. Conway and M. Salomon, J. Chem. Phys. 41 (1964) 3169.Google Scholar
  88. 65a.
    B. E. Conway and D. J. MacKinnon, J. Electro chem. Soc. 116 (1969) 1665.Google Scholar
  89. 66.
    B. Topley and H. Eyring, J. Am. Chem. Soc. 55 (1933) 5058;Google Scholar
  90. 66a.
    B. Topley and H. Eyring, Trans. Faraday Soc. 66 (1970) 1203.Google Scholar
  91. 67.
    C. Eckart, Phys. Rev. 35 (1930) 1303.Google Scholar
  92. 68.
    J. O’M. Bockris, S. Srinivasan, and D. B. Matthews, Disc. Faraday Soc. 39 (1965) 239.Google Scholar
  93. 69.
    F. P. Bowden, Proc. Roy. Soc. (London) A125 (1929) 446;Google Scholar
  94. 69.
    F. P. Bowden, Proc. Roy. Soc. (London) A126 (1929) 107.Google Scholar
  95. 70.
    Z. A. Jofa and K. P. Mikulin, Zh. Fiz. Khim. 18 (1944) 137.Google Scholar
  96. 71.
    J. O’M. Bockris and R. Parsons, Trans. Faraday Soc. 45 (1949) 916.Google Scholar
  97. 72.
    B. Post and C. F. Hiskey, J. Am. Chem. Soc. 72 (1950) 4203.Google Scholar
  98. 73.
    S. Mine and J. Sobkowski, Bull Acad. Polon. Sci., Ser. Sci. Chim. Geol. et Geograph 7 (1959) 29.Google Scholar
  99. 74.
    Z. A. Jofa and V. Stepanova, Zh. Fiz. Khim. 19 (1945) 125.Google Scholar
  100. 75.
    J. O’M. Bockris and D. B. Matthews, Electrochim. Acta 11 (1966) 143.Google Scholar
  101. 76.
    J. N. Butler and M. L. Meehan, Trans. Faraday Soc. 62 (1966) 3524.Google Scholar
  102. 77.
    C. E. H. Bawn and G. Ogden, Trans. Faraday Soc. 30 (1934) 432.Google Scholar
  103. 78.
    B. Post and C. F. Hiskey, J. Am. Chem. Soc. 73 (1951) 161.Google Scholar
  104. 79.
    M. Rome and C. F. Hiskey, J. Am. Chem. Soc. 76 (1954) 5207.Google Scholar
  105. 80.
    B. E. Conway and M. Salomon, Per. Bunsenges Physik. Chem. 68 (1964) 331;Google Scholar
  106. 80a.
    M. Salomon, Can. J. Chem. 44 (1966) 689.Google Scholar
  107. 81.
    M. Salomon and B. E. Conway, Disc. Faraday Sic. 39 (1965) 223.Google Scholar
  108. 82.
    J. Horiuti and M. Ikusima, Proc. Imperial Acad. Tokyo 15 (1939) 39.Google Scholar
  109. 83.
    E. C. Potter, Ph.D. Thesis, London (1950);Google Scholar
  110. 83a.
    J. O’M. Bockris and E. C. Potter, J. Electrochem. Soc. 99 (1952) 169 ;Google Scholar
  111. 83b.
    J. O’M. Bockris and E. C. Potter, J. Chem. Phys. 20 (1952)614.Google Scholar
  112. 84.
    J. Horiuti and T. Nakamura, Z. Physik Chem. (Frankfurt) 11 (1957) 358.Google Scholar
  113. 85.
    R. Parsons, Trans. Faraday Soc. 47 (1951) 1332.Google Scholar
  114. 86.
    K. B. Oldham, J. Am. Chem. Soc. 11 (1955) 4697.Google Scholar
  115. 87.
    A. C. Makrides, J. Electrochem. Soc. 104 (1957) 677;Google Scholar
  116. 87a.
    A. C. Makrides, J. Electrochem. Soc. 109 (1962) 256.Google Scholar
  117. 88.
    H. Mauser, Z. Elektrochem. 62 (1958) 419 ;Google Scholar
  118. 88a.
    J. O’M. Bockris and H. Mauser, Can. J. Chem. 37 (1959) 475.Google Scholar
  119. 89.
    A. C. Riddiford, J. Chem. Soc. (1960) 1175.Google Scholar
  120. 90.
    D. M. Mohilner, J. Phys. Chem. 68 (1964) 632.Google Scholar
  121. 91.
    S. Barnartt, J. Phys. Chem. 70 (1966) 412.Google Scholar
  122. 92.
    A. R. Despic, Bull. Soc. Chim. (Belgrade) 30 (1955) 293 ; Parts II to IV in press.Google Scholar
  123. 93.
    B. E. Conway, Electrode Processes, Ronald Press Co., New York (1965).Google Scholar
  124. 94.
    J. O’M. Bockris, Disc. Faraday Soc. 1 (1947) 132;Google Scholar
  125. 94a.
    J. O’M. Bockris, Nature 159 (1947) 539;Google Scholar
  126. 94b.
    J. O’M. Bockris, Trans. Faraday Soc. 43 (1941) 417.Google Scholar
  127. 95.
    N. K. Adam, The Physics and Chemistry of Surfaces, 3rd ed., Oxford University Press, London (1941), footnote p. 332.Google Scholar
  128. 96.
    P. Ehrenfest, Ann. Phys. 51 (1916) 327.Google Scholar
  129. 97.
    L. I. Schiff, Quantum Mechanics, McGraw-Hill Book Co., New York (1949), p. 207.Google Scholar
  130. 98.
    D. Park, Introduction to Quantum Theory, McGraw-Hill Book Co., New York (1964), p. 241.Google Scholar
  131. 99.
    P. Fong, Elementary Quantum Mechanics, Addison-Wesley Publishing Co., Reading, Mass. (1962), pp. 244, 254.Google Scholar
  132. 100.
    F. London, Z. Elektrochem. 35 (1929) 552.Google Scholar
  133. 101.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Co., New York (1941) p. 87.Google Scholar
  134. 102.
    W. Kauzmann, Quantum Chemistry, Academic Press, New York (1957), p. 536.Google Scholar
  135. 103.
    G. Herzberg, Spectra of Diatomic Molecules, 2nd ed., D. van Nostrand, New York (1950).Google Scholar
  136. 104.
    P. H. Cutler and D. Nagy, Surface Sci. 3 (1965) 71.Google Scholar
  137. 105.
    K. Müller, J. Res. Inst. Catal. Hokkaido Univ. XIV (1966) 224.Google Scholar
  138. 106.
    R. D. Young, Phys. Rev. 113 (1959) 110.Google Scholar
  139. 107.
    R. Harris and W. D. Weir, J. Chem. Phys. 47 (1967) 3247.Google Scholar
  140. 108.
    P. van Rysselberghe, Electrochim. Acta 8 (1963) 583, 709.Google Scholar
  141. 109.
    St. G. Christov, Ber. Bunsenges. Physik. Chem. 67 (1963) 117.Google Scholar
  142. 110.
    J. Weiss, Proc. Rov. Soc. (London) A222 (1954) 128.Google Scholar
  143. 111.
    W. F. Libby, J. Phys. Chem. 56 (1952) 863.Google Scholar
  144. 112.
    R. J. Marcus, B. J. Zwolinski, H. Eyring, J. Phys. Chem. 58 (1954) 432.Google Scholar
  145. 113.
    D. B. Matthews, Aust. J. Chem. 22 (1969) 1349.Google Scholar
  146. 114.
    J. M. Hale, J. Electroanal. Chem. 19 (1968) 315.Google Scholar
  147. 115.
    R. R. Dogonadze, A. M. Kuznetsov, and V. G. Levich, Electrochim. Acta 13 (1968) 1025.Google Scholar
  148. 116.
    H. Genscher, Surface Sci. 18 (1969) 97.Google Scholar
  149. 117.
    N. S. Hush, Electrochim. Acta 13 (1968) 1005.Google Scholar
  150. 118.
    V. G. Levich, Physical Chemistry, Vol. 9B, Ed., Eyring, Henderson, and Jost, John Wiley and Sons, 1970.Google Scholar
  151. 119.
    E. D. German, R. R. Dogonadze, A. M. Kuznetsov, V. G Levich, and Y. I. Kharkats, Electrorkimia 6 (1970) 350–354.Google Scholar
  152. 120.
    A. M. Kuznetsov, Electrochimica Acta 13 (1968) 1293.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Dennis B. Matthews
    • 1
  • John O’M. Bockris
    • 2
  1. 1.Chemicals DivisionUnion Carbide Australia, Ltd.RhodesAustralia
  2. 2.Electrochemistry Laboratory, John Harrison Laboratory of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations