Superconductivity in Very Pure Metals

  • W. D. Gregory
Conference paper


Recently it has been possible to obtain very pure (99.999+%) metals at a very reasonable cost due to the development of improved large scale purifying processes(1). Studies may now be performed cheaply on pure single crystal specimens of a type approximating the “ideal” specimen assumed in most theories of normal and superconducting metals. In this lecture we summarize the results obtained from experiments involving the superconducting properties (and some normal state properties) of such materials. These results are indicative of the new and interesting phenomena one might observe in very pure single crystal specimens. We will discuss only our own results, for reasons of time limitation and familiarity, although similar data are now found with increasing frequency in the literature.


Fermi Surface Pure Metal Crystal Orientation Mutual Inductance Resistive Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    One of the reasons pure metals are now available seems to be due to the growth of the semiconductor and integrated circuit industries. Extremely pure metals are required as dopants for many semiconductor devices and for components such as thin film resistors, in integrated circuits. Most of the elemental superconducting metals are used in one of these capacities.Google Scholar
  2. 2.
    W.D. Gregory, Phys. Rev. 165, 556 (1968).CrossRefGoogle Scholar
  3. 3.
    W.D. Gregory, T.P. Sheahen and J.F. Cochran, Phys. Rev. 150, 315 (1960).CrossRefGoogle Scholar
  4. 4.
    W.D. Gregory, Phys. Rev. Letters 20, 53 (1968).CrossRefGoogle Scholar
  5. 5.
    W.D. Gregory and M.A. Superata, J. of Crystal Growth 1, 5 (1970).CrossRefGoogle Scholar
  6. 6.
    W.D. Gregory, M.A. Superata and P.J. Carroll, Phys. Rev. B3, 85 (1971).Google Scholar
  7. 7.
    J.C. Keister, L.S. Straus and W.D. Gregory, J. of Appl. Phys. 42, 642 (1971)CrossRefGoogle Scholar
  8. W.D. Gregory, R.F. Averill and L.S. Straus, Phys. Rev. Letters 27, 1503 (1971).CrossRefGoogle Scholar
  9. Similar data for In may be found in R.F. Averill, L.S. Straus and W.D. Gregory, Appl. Phys. Lett. 20, 55 (1972).CrossRefGoogle Scholar
  10. 8.
    W.L. Pillenger, P.S. Jostram and J.G. Daunt, Rev. Sci. Inst. 29, 159 (1958).CrossRefGoogle Scholar
  11. 9.
    M. Yaqub and J.F. Cochran, Phys. Rev. 137., A 1182 (1965)CrossRefGoogle Scholar
  12. J.F. Cochran and M. Yaqub, Phys. Rev. 140 A 2174 (1965).CrossRefGoogle Scholar
  13. 10.
    G. Seidel and P.H. Keesom, Phys. Rev. 112, 1083 (1958)Google Scholar
  14. G. Seidel and P.H. Keesom, Phys. Rev. Letters 2, 261 (1959).CrossRefGoogle Scholar
  15. 11.
    D. Shöenberg, “Superconductivity,” 2nd. ed., Cambridge, New York (1952).Google Scholar
  16. 12.
    M. Strongin and E. Maxwell, Rev. Sci. Intr. 34, 590 (1963).CrossRefGoogle Scholar
  17. 13.
    J.F. Schooley in “Proceedings of the 2nd Symposium, 1969 Spring Superconducting Symposia,” (NRL, 1969) NRL Report 6972, p.7Google Scholar
  18. R.A. Hein and R.L. Falge Phys. Rev. 123., 407 (1961).CrossRefGoogle Scholar
  19. 14.
    L. Bosio, A. Defrain and I. Erdboin, Compt. Rend. 250, 2553 (1960).Google Scholar
  20. 15.
    WADD Technical Report PB171619, Clearinghouse, Springfield, Va. (1960.Google Scholar
  21. 16.
    J.E. Neighbor, J. Appl. Phys. 40, 3078 (1969).CrossRefGoogle Scholar
  22. 17.
    H.S. Carslaw and J.C. Jaeger, “Conduction of Heat in Solids,” Clarendon Press, Oxford (1959).Google Scholar
  23. 18.
    G.E.H. Reuter and E.H. Sondheimer, Proc. Roy. Soc. A 195, 336 (1948).CrossRefGoogle Scholar
  24. 19.
    E.A. Lynton, B. Serin and M. Zucker, J. Phys. Chem. Solids 3. 165 (1957).CrossRefGoogle Scholar
  25. 20.
    D. Markowitz and L.P. Kadanoff, Phys. Rev. 131, 563 (1963).CrossRefGoogle Scholar
  26. 21.
    R.J. von Gutfeld and A.H. Nethercot, Jr., Phys. Rev. Letters 18, 855 (1967).CrossRefGoogle Scholar
  27. 22.
    J.R. Schrieffer and D.M. Ginsberg, Phys. Rev. Letters 8 207 (1962).CrossRefGoogle Scholar
  28. 23.
    D.M. Ginsberg, Phys. Rev. Letters 8, 204 (1962).CrossRefGoogle Scholar
  29. 24.
    G. Chanin, E.A. Lynton and B. Serin, Phys. Rev. 114 719 (1959).CrossRefGoogle Scholar
  30. 25.
    E.A. Lynton and D. McLachlan, Phys. Rev. 126, 40 (1962).CrossRefGoogle Scholar
  31. 26.
    The expression for the mean free path associated with current conduction along the long direction of a thin plate, as calculated by Fuchs [K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938)]. Equation (29) was obtained from Fuch’s model, but since the free paths, in the present case, were not weighted in favor of the long dimension, as they are for current conduction, the mfp was found to be smaller. This reduction amounts to replacing the factor ¾ in the Fuchs expression by ½. The details of this calculation are contained in Appendix 5, W.D. Gregory, Ph.D. thesis, MIT 1966 (unpublished).CrossRefGoogle Scholar
  32. 27.
    J.F. Cochran, Ann. Phys. (New York) 19, 186 (1962).CrossRefGoogle Scholar
  33. 28.
    P.J. Price, IBM J. Res. Develop. 4, 152 (1960).CrossRefGoogle Scholar
  34. 29.
    F.S. Ham and D.C. Mattis, IBM J. Res. Develop. 4, 143 (1960).CrossRefGoogle Scholar
  35. 30.
    K. Yoshihiro and W. Sasaki, J. Phys. Soc. Japan 24, 426 (1968); 860 (1969); 28, 262 (1970).CrossRefGoogle Scholar
  36. 31.
    J.C. Keister, L.S. Straus, and W.D. Gregory, Bull. Am. Phys. Soc. 15, 321 (1970); also see Ref. 7.Google Scholar
  37. 32.
    A.G. Sheplev, Usp. Fiz. Nauk 96, 217 (1968) [Soviet Phys. Usp. 11, 690 (1969)].Google Scholar
  38. 33.
    E. Papp and K. Soymar, Tsvetn. Mettal. 5, 147 (1963).Google Scholar
  39. 34.
    Recently, D. Gubser, Phys. Rev. 6, 827 (1972)) has shown that a combination of anisotropy and deviation of the pairing interaction strength from weak coupling could cause the observed deviation of the critical field curve from the BCS weak coupling limit.CrossRefGoogle Scholar
  40. 35.
    D.G. Naugle and R.E. Glover, III, Phys. Letters 28A, 611 (1969).Google Scholar
  41. 36.
    Ivar Giaever, Phys. Rev. Lett. 5, 147 (1960).CrossRefGoogle Scholar
  42. 37.
    L. Holland, Vacuum Deposition of Thin Films (Wiley, New York, 1961), p.2.Google Scholar
  43. 38.
    D.M. Evans and H. Wilman, Acta Cryst. 5, 731 (1952)CrossRefGoogle Scholar
  44. see also G.I. Lykken, A.L. Geiger, and E.N. Mitchell, Phys. Rev. Lett. 25, 1578 (1970).CrossRefGoogle Scholar
  45. 39.
    R.W. Cohen, B. Abeles, and G.S. Weisbarth, Phys. Rev. Lett. 18, 336 (1967).CrossRefGoogle Scholar
  46. 40.
    N.V. Zavaritskii, Sov. Phys. JETP 18, 1260 (1964).Google Scholar
  47. 41.
    A.F.G. Wyatt, Phys. Rev. Lett. 13, 160 (1964).CrossRefGoogle Scholar
  48. 42.
    M.L.A. MacVicar and R.M. Rose, J. Appl. Phys. 39, 1721 (1968).CrossRefGoogle Scholar
  49. 43.
    M. Yaqub and J.F. Cochran, Phys. Rev. 137, A1182 (1965).CrossRefGoogle Scholar
  50. 44.
    H. Wuhl, J.E. Jackson, and C.V. Briscoe, Phys. Rev. Lett. 20, 1496 (1968).CrossRefGoogle Scholar
  51. 45.
    J.C. Keister, L.S. Straus, and W.D. Gregory, J. Appl. Phys. 42. 642 (1971).CrossRefGoogle Scholar
  52. 46.
    S. Shapiro, P.H. Smith, J. Nicol, J.L. Miles, and P.F. Strong, IBM Res. Develop. 34, 34 (1962).CrossRefGoogle Scholar
  53. 47.
    J.R. Clem, Am. Phys. (New York) 40, 268 (1966).CrossRefGoogle Scholar
  54. 48.
    See, for example, J.W. Hafstrom and M.L.A. MacVicar, Phys. Rev. B2, 4511 (1970).Google Scholar
  55. 49.
    Private Communication.Google Scholar
  56. 50.
    J.E. Dowman, M.L.A. MacVicar, and J.R. Waldram, Phys. Rev. 186, 452 (1969).CrossRefGoogle Scholar
  57. 51.
    N.V. Zavaritskii, Zh. Eksp. Teor. Fiz. 45, 1839 (1963) [Sov. Phys. JETP 18, 1260 (1964)].Google Scholar
  58. 52.
    B.L. Blackford and R.H. March, Phys. Rev. 186, 397 (1969).CrossRefGoogle Scholar
  59. 53.
    K. Yoshihiro and W. Sasaki, J. Phys. Soc. Jap. 28, 452 (1970).Google Scholar
  60. 54.
    K. Yoshihiro and W. Sasaki, private communication.Google Scholar
  61. 55.
    J.H. Wood, Phys. Rev. 146, 432 (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • W. D. Gregory
    • 1
  1. 1.Department of PhysicsGeorgetown UniversityUSA

Personalised recommendations