Phenomenological Theories of Superconductivity

  • W. D. Gregory
Conference paper


In the previous lecture you became acquainted with some of the facts and history of superconductivity. We will now begin a somewhat intensive study of these facts and the theories that have successfully explained them.


Constitutive Relation Superconducting State Josephson Junction Skin Depth Normal Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
  2. 2.
    An excellent reference text for Electricity and Magnetism is “Classical Electrodynamics”, J.D. Jackson, John Wiley and Sons (New York) 1962. Other possible references are listed at the end of each chapter in Jackson.Google Scholar
  3. 3.
    Some confusion has developed in the literature on superconductivity over the use of when discussing the Londons’ equation. Although not strictly correct, no harm is done in this case. (For further discussion of this problem, see Ref. 3, p. 150 ff).Google Scholar
  4. 4.
    R.M. Bozorth, “Ferromagnetism” Van Nostrand, New York, (1951).Google Scholar
  5. 5.
    E.C. Stoner, Phil. Mag. 36, 803 (1945).Google Scholar
  6. 6.
    D. Shöenberg, “Superconductivity,” 2nd. ed., Cambridge, New York (1952).Google Scholar
  7. 7.
    K. Mendelssohn, Proc. Roy. Soc. A 152, 34 (1935).Google Scholar
  8. 8.
    R. Peierls, Proc. Roy. Soc. A 155, 613 (1936)CrossRefGoogle Scholar
  9. F. London, Physica 3, 450 (1936).CrossRefGoogle Scholar
  10. 9.
    F. London and H. London, Proc. Roy. Soc. A 149, 71 (1935); Physica 2, 341 (1935). There is a second Londons’ equation describing the behavior of the electric field in the superconductor that is analogous to equation 18. We will use both of these in describing the behavior of a superconductor in an r.f. field, equation (65).CrossRefGoogle Scholar
  11. 10.
    If the Lorentz force term, is included, we will obtain the same result provides we also treat the acceleration,as a total time derivative.Google Scholar
  12. 11.
    R. Doll and M. Näbauer, Phys. Rev. Letters 7, 51 (1961).CrossRefGoogle Scholar
  13. 12.
    B. S. Deaver and W.M. Fairbank, Phys. Rev. Letters 7, 43 (1961).CrossRefGoogle Scholar
  14. 13.
    B. S. Chandrasekhar in “Superconductivity” R.D. Parks, Ed., Marcel Dekker, New York, (1969).Google Scholar
  15. 14.
    A.B. Pippard Proc. Roy. Soc. A 203, 98 (1950); 195 (1950) A 216 547 (1953).CrossRefGoogle Scholar
  16. 15.
    G.E.H. Reuter and E.H. Sondheimer, Proc. Roy. Soc. A 195, 336 (1948).CrossRefGoogle Scholar
  17. 16.
    D.C. Mattis and J. Bardeen Phys. Rev. 111, 412 (1958).CrossRefGoogle Scholar
  18. 17.
    A particularly useful treatment of thermodynamics for superconductivity, because of the attention given to magnetic systems, is contained in “Thermal Physics,” P.M. Morse, W.A. Benjamin, New York, (1969) (2nd ed.).Google Scholar
  19. 18.
    See, for example, P. and T. Ehrenfest, “The Conceptual Foundations of the Statistical Approach in Mechanics,” M.J. Moravcsik, Trans., Cornell Univ. Press (Ithaca, N.Y.)(1959): also, Commun. Phys. Lab. Univ. Leiden, Suppl. No. 75b.Google Scholar
  20. 19.
    The derivation of H (T) given here follows that of Schoenberg, Ref. 6.Google Scholar
  21. 20.
    K. Huang, “Statistical Mechanics,” Wiley (New York) 1966.Google Scholar
  22. 21.
    C.J. Gorter and H.B.G. Casimir, Phys. Z. 35, 963 (1934); Z Techn. Phys. 15, 539 (1934).Google Scholar
  23. 22.
    A. L. Schawlow and G.E. Devlin, Phys. Rev. 113, 120 (1959).CrossRefGoogle Scholar
  24. 23.
    N.R. Werthamer, Phys. Rev. 147, 255 (1966).CrossRefGoogle Scholar
  25. 24.
    W.D. Gregory, L. Leopold, J. Bostock, R.F. Averill and D. Repici, Proceedings of the 12th Int. Low Temp. Conf. Kyoto (1971), p. 445.Google Scholar
  26. 25.
    V.L. Ginzburg, Zh. Eksperim. i. Teor. Fiz. 14, 134 (1946); Fortschr. Phys. 1, 101 (1953).Google Scholar
  27. 26.
    H.W. Lewis, Phys. Rev. 102, 1508 (1956).CrossRefGoogle Scholar
  28. 27.
    L. Tiza, Phys. Rev. 80, 163 (1950); 84, 163 (1951).Google Scholar
  29. 28.
    V.L. Ginzburg and L.D. Landau, Zh. Eksperim. i. Ther. Fig. 20, 1064 (1950).Google Scholar
  30. 29.
    D. Saint-James and P.G. de Gennes, Phys. Letters (Holland) 7, 306 (1963).CrossRefGoogle Scholar
  31. 30.
    J.M. Blatt, “Theory of Superconductivity,” Academic Press, New York, (1964).Google Scholar
  32. 31.
    B.D. Josephson, Phys. Letters (Holland) 1, 251 (1962).CrossRefGoogle Scholar
  33. 32.
    R.P. Feynman, R.B. Leighton and M. Sands, “The Feynman Lectures on Physics, Vol. III,” Addison-Wesley (Reading, Mass) 1965.Google Scholar
  34. 33.
    P.W. Anderson and J.M. Rowell Phys. Rev. Letters 10, 340 (1963).CrossRefGoogle Scholar
  35. 34.
    S. Shapiro, Phys. Rev. Letters 11, 80 (1963).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • W. D. Gregory
    • 1
  1. 1.Department of PhysicsGeorgetown UniversityUSA

Personalised recommendations