Superconducting Intermetallic Compounds — The A15 Story

  • Robert A. Hein


Twenty years ago the phenomenon of superconductivity was the exclusive property of the low temperature physicist and was regarded as the major unsolved problem of solid state physics. Today one reads and hears that superconductivity is well understood and that most solid state theoreticians regard it as a “solved problem” no longer worthy of their full attention. I believe that, due to the technological promises of applied superconductivity, there are currently more metallurgists, engineers and electronic specialists involved with superconductivity than there are physicists, or at least physicists who are engaged in the “physics” of superconductivity.


Valence Electron Range Order Long Range Order Atomic Volume Range Order Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Hardy and J.K. Hulm, Phys. Rev. (L) 87, 884 (1953); and Phys. Rev. 93, 1004 (1954).CrossRefGoogle Scholar
  2. 2.
    B. W. Roberts, NBS Technical Note No. 482 May 1969, U.S. Gov’t. Printing Office, Wash. D. C. 20402.Google Scholar
  3. 3.
    H. Fröhlich, Phys. Letters 35A, 325 (1971).Google Scholar
  4. 4.
    B. T. Matthias, Phys. Rev. Letters 18, 781 (1967).CrossRefGoogle Scholar
  5. 5.
    E. F. Burton, H. Grayson-Smith, J. O. Wilhelm, “Phenomena at the Temperature of Liquid Helium”, Reinhold Publishing Corp., New York, 1940, page 93.Google Scholar
  6. 6.
    B. B. Goodman, Nature 167, 111 (1951).CrossRefGoogle Scholar
  7. 7.
    R. A. Hein, J.W. Gibson, B.T. Matthias, T.H. Geballe and E. Corenzwit, Phys. Rev. Letters 8, 408 (1962).CrossRefGoogle Scholar
  8. 8.
    B. T. Matthias, Phys. Rev. 92, 874 (1953).CrossRefGoogle Scholar
  9. 9.
    J. G. Daunt and J. W. Cobble, Phys. Rev. (L) 92, 507 (1953).CrossRefGoogle Scholar
  10. 10.
    B. T. Matthias, Phys. Rev. 97, 74 (1955).CrossRefGoogle Scholar
  11. 11.
    A. S. Cooper, E. Corenzwit, L. D. Longinotti, B.T. Matthias, and W. Zachariasen, Proc. N.A.S. 67, 313 (1970).CrossRefGoogle Scholar
  12. 12.
    K. Clausis, f. Electrochem. 38, 312 (1932).Google Scholar
  13. 13.
    R. L. Falge Jr., Phys. Letters 24A, 579 (1967)Google Scholar
  14. 14.
    L. R. Testardi, Phys. Rev. B3, 95 (1971).Google Scholar
  15. 15.
    L.R. Testardi, J. E. Kunzler, H. J. Levinstein, J. P. Maita, and J.H. Wernick, Phys. Rev. B3, 107 (1971).Google Scholar
  16. 16.
    T.F. Smith, J. Low Temperature Phys. 6, 171 (1972).CrossRefGoogle Scholar
  17. 17.
    J. deLaunay and R. D. Dolecek, Phys. Rev. 72, 141 (1947).CrossRefGoogle Scholar
  18. 18.
    R. D. Fowler, B.T. Matthias, L. B. Asprey, H.H. Hill, J.D.G. Lindsay, and R. W. White, Phys. Rev. Letters 15, 860 (1965).CrossRefGoogle Scholar
  19. 19.
    J.G. Daunt and T. S. Smith, Phys. Rev. 88, 309 (1952).Google Scholar
  20. 20.
    J.G. Daunt and T. S. Smith, Phys. Rev. 88, 309 (1952).CrossRefGoogle Scholar
  21. 21.
    I. M. Chapnik, Soviet Physics, Doklady 6, 988 (1962).Google Scholar
  22. 22.
    B.T. Matthias, T.H. Geballe, S. Geller, and E. Corenzwit, Phys. Rev. 95, 1435 (1954).CrossRefGoogle Scholar
  23. 23.
    S. Geller, B.T. Matthias, and R. Goldstein, J. Amer. Chem. Soc. 77, 1502 (1955).CrossRefGoogle Scholar
  24. 24.
    B.T. Matthias, J. Phys. & Chem. Solids 1, 188 (1953); Prog. in Low Temperature Physics, C. J. Gortor, Ed. Vol. II (1957).CrossRefGoogle Scholar
  25. 25.
    P. Greenfeld and P.A. Beck, Trans. AIME (J. of Metals) 265 (1956).Google Scholar
  26. 26.
    E. Raub and W. Mahler, Z. Mettal 46, 210 (1955).Google Scholar
  27. 27.
    E.A. Wood, V.B. Compton, B.T. Matthias, and E. Corenzwit, Acta Cryst. 11, 604 (1958)CrossRefGoogle Scholar
  28. 28.
    J.H. Wernick, F. J. Monin, F. S. L. Huo, D. Darsi, J. P. Maita and J. E. Kunzler, Proc. of the Internat. Conf. High Mag. Fields, H. Kolm et al., Ed., J. Wiley and Sons, p. 609 (1962).Google Scholar
  29. 29.
    W. E. Blumberg, J. Eisinger, V. Jaccarino, and B. T. Matthias, Phys. Rev. Letters 5, 149 (1960).CrossRefGoogle Scholar
  30. 30.
    J.H.N. van Vucht, H.A.C.M. Bruning, H.C. Conkersloot and A.H. Gomes de Mesquita, Phillips Research Reports 19, 407 (1967)Google Scholar
  31. 31.
    E.C. van Reuth and R. M. Waterstratt, Acta Cryst. B24, 186 (1968).Google Scholar
  32. 32.
    J. J. Hanak, G. D. Cody, P. R. Aron, and H. C. Hitchcock, High Magnetic Fields, MIT, Wiley 1961, p. 592.Google Scholar
  33. 33.
    J. J. Hanak, G. D. Cody, J. L. Cooper, and M. Rayl, Proc. of the VIII Internat. Conf. Low Temp. Phys., R. O. Davis, Ed. Butterwirth, 1963; (b) J. J. Hanak, Metallurgy of Advanced Electronic Materials, G. E. Brock, Ed., Interscience Publ. 1963, p. 161.Google Scholar
  34. 34.
    H. G. Jansen and E. J. Saur, Proc. VIIth Internat. Conf. on Low Temperature Physics, Univ. of Tronto Press 1960, p. 184.Google Scholar
  35. 35.
    T.B. Reed, H. G. Gatos, W. J. LaFleur, and T. J. Roddy, “Metallurgy of Advanced Electronic Materials”, G. E Brock, Ed., Interscience Publishers 1963, p. 71.Google Scholar
  36. 36.
    H.G. Jansen, Z. Phys. 162, 275 (1961).CrossRefGoogle Scholar
  37. 37.
    L.J. Vieland, RCA Review 25, Sept. 1964.Google Scholar
  38. 38.
    T.H. Courtney, G.W. Pearsall, and J. Wulff, Trans. AIME 233, 212 (1965); J. Appl. Phys. 36, 3256 (1965).Google Scholar
  39. 39.
    J.F. Bachner and H. C. Gatos, Trans. AIME 236, 1261 (1966).Google Scholar
  40. 40.
    R. M. Waterstrat — private communication.Google Scholar
  41. 41.
    B.T. Matthias, T. H. Geballe, L. D. Longinotti, E. Corenzwit, G.W. Hull, R.H. Willens, and J. P. Maita, Science, 156, 645 (1967).CrossRefGoogle Scholar
  42. 42.
    R.A. Hein, J.E. Cox, R. D. Blaugher, R. M. Waterstrat, Conf. on the Science and Technology of Superconductors, Aug. 1969. To be published in Physica.Google Scholar
  43. 43.
    E. C. van Reuth, R. M. Waterstrat, R. D. Blaugher, J. E. Cox, and R.A. Hein, Proc. of the Xth Internat. Conf. on Low Temperature Physics Moscow (1966).Google Scholar
  44. 44.
    F. Heiniger, R. Flukiger, A. Junod, J. Muller, P. Spitzli, and J. L. Standenmann, Proc. of the Twelfth Internat. Conf. on Low Temperature Physics, E. Kanda, Ed., Academic Press Japan, p. 33 (1971).Google Scholar
  45. 45.
    J. Muller, Proc. Summer School for Superconductivity, Oct. 12–16, 1970, Pegnitz/Oberfranken, see also Ref. 44.Google Scholar
  46. 46.
    T.G. Berlincourt, Superconductivity in Science and Technology, M.H. Cohen, Ed. Univ. Chicago Press, p. 31 (1968).Google Scholar
  47. 47.
    R.A. Hein, J.E. Cox, R. D. Blaugher, and R. M. Waterstrat, Solid State Comm. 7, 381 (1969).CrossRefGoogle Scholar
  48. 49.
    B.T. Matthias, T.H. Geballe, R. H. Willens, E. Corenzwit, and G.W. Hull, Jr., Phys. Rev. 139, A1501 (1965).CrossRefGoogle Scholar
  49. 50.
    A. Muller, Z. Naturforsch. 24a, 11346 (1969).Google Scholar
  50. 51.
    N. Pessal and J.K. Hulm, Physics 2, 311 (1966).Google Scholar
  51. 52.
    T. Asada, T. Horiuchi, and M. Uchida, J. Appl. Phys. (Japan) 8, 958 (1968).CrossRefGoogle Scholar
  52. 53.
    H.L. Luo, E. Vielhaber, and E. Corenzwit, Z. Physik 230, 443 (1970).CrossRefGoogle Scholar
  53. 54.
    L. D. Hartsough and R. H. Hammond, Stanford APS Meeting (1971) and private communication.Google Scholar
  54. 55.
    R. Hagner and E. Saur, Proc. Eighth Internat. Conf. on Low Temperature Physics, R. O. Davies, Ed. Butter-worths, p. 358 (1963).Google Scholar
  55. 56.
    N. E. Alekseevskii N. V. Ageev, and V. J. Shamrai, Investiya Akademii Nauk SSSR Neorganicheskie Materialy 2, 2156 (1966) English Trans.Google Scholar
  56. 57.
    R. Flukiger, P. Spitzli, F. Heiniger, and J. Muller, Phys. Letters A29, 407 (1961).Google Scholar
  57. 58.
    G. Arrhenius, E. Corenzwit, R. Fitzgerald, G. W. Hull, H.L. Luo, B.T. Matthias, and W. H. Zachariasen, Proc. N.A. S. 61, 621 (1968).CrossRefGoogle Scholar
  58. 59.
    A. Muller, Z. Naturforsch 25A, 1659 (1970); Paper presented at Tief Temperaturen, Mar. 22–26, 1971.Google Scholar
  59. 60.
    R. M. Waterstrat and E. C. van Reuth, NBS Report 10, 061, Oct. 20, 1969.Google Scholar
  60. 61.
    (a) A.M. Clogston and V. Jaccarino, Phys. Rev. 121, 1357 (1961)CrossRefGoogle Scholar
  61. 61.
    (b) A.M. Clogston, Phys. Rev. 136, A8 (1961).CrossRefGoogle Scholar
  62. (c).
    M. Weger, Rev. Mod. Phys. 36, 175 (1964).CrossRefGoogle Scholar
  63. (d).
    L.F. Mattheiss, Phys. Rev. 138, A112 (1965).CrossRefGoogle Scholar
  64. (e).
    J. Labbe, Phys. Rev. 158, 647 (1967); 158, 655 (1967); 172, 451 (1968).Google Scholar
  65. (f).
    A. P. Levanyuk and R.A. Suris, Soviet Phys. USPEKHJ 10, 40 (1967).CrossRefGoogle Scholar
  66. (g).
    R. W. Cohen, C.D. Cody, and J. J. Halloran, Phys. Rev. Letters 19, 840 (1967).CrossRefGoogle Scholar
  67. (h).
    C.D. Cody and L. J. Vieland, Electronic Density of Solids, Nov. 3–6, 1937 — NBS, Washington, D. C.Google Scholar
  68. (i).
    M. Weger, J. Phys. Chem. Solids 31, 1671 (1970).CrossRefGoogle Scholar
  69. 62.
    J. Labbe and E. C. van Reuth. Phys. Rev. Letters 24, 1232 (1970).CrossRefGoogle Scholar
  70. 63.
    B. T. Matthias, E. Corenzwit, A. S. Cooper and L. D. Longinotti, J. Proc. N. A. S. 68, 56 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Robert A. Hein
    • 1
  1. 1.U. S. Naval Research LaboratoryUSA

Personalised recommendations