Advertisement

The Metallurgy of Superconductors

  • Robert M. Rose
Conference paper

Abstract

The structure and processing of superconducting materials play a dominant role in determining the critical current density, critical field, critical temperature, losses in AC fields at all frequencies, magnetic stability in large DC magnetic devices, reliability and durability of tunnel junctions and other useful and practical properties. Some of these effects are explainable via the Ginzburg-Landau-Abrikosov-Borkov phenomenological theory with flux flow effects included; some are relatively crude matters of thermal and magnetic diffusivity; some are associated with surface topography on a submicroscopic scale; and some, including the critical temperature, are matters of conjecture. What is certain is that whether a superconducting material is useful at all depends crucially on how it is manufactured. The present and past status of practical and potentially practical materials, their properties, methods of fabrication and limitations, are reviewed and discussed.

Keywords

Critical Current Density Critical Field Tunnel Junction Rock Salt Lave Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Table I

  1. 1.
    J. K. Hulm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).CrossRefGoogle Scholar
  2. 2.
    D. A. Colling, K. M. Ralls and J. Wulff, J. Appl. Phys. 37, 4750 (1966).CrossRefGoogle Scholar
  3. 3.
    L. J. Barnes and R. R. Hake, Phys. Rev. 153, 435 (1967).CrossRefGoogle Scholar
  4. 4.
    L. Kramer, Phys. Letters 20, 619 (1966).CrossRefGoogle Scholar
  5. 5.
    E. Lerner and J. G. Daunt, Phys. Rev. 142, 251 (1966).CrossRefGoogle Scholar
  6. 6.
    F. Heiniger, E. Bucher and J. Muller, Phys. Kond. Materie 5, 243 (1966).CrossRefGoogle Scholar
  7. 7.
    F. J. Cadieu and D. H. Douglass, Jr., to appear in Proc. 12th Int. Conf. on Low-Temp. Physics (paper 8Xa).Google Scholar
  8. 8.
    G. Arrhenius, E. C. Corenzwit, R. Fitzgerald, G. W. Hull, Jr., H. L. Luo, B. T. Matthias and W. H. Zachariasen, Proc. Nat. Acad. Sco. 61, 621 (1968).CrossRefGoogle Scholar
  9. 9.
    T. J. Greytak and J. H. Wernick, J. Phys. Chem. Sol. 25, 535 (1964).CrossRefGoogle Scholar
  10. 10.
    W. Kunz and E. Saur, Proc. 9th Int. Conf. on Low Temp. Phys. (1965). p. 481.Google Scholar
  11. 11.
    K. Hechler, E. Saur and H. Wizgall, Z. Physik 205, 400 (1967).CrossRefGoogle Scholar
  12. 12.
    F. J. Darnell, P. E. Bierstedt, W. O. Forshey, R. K. Waring Jr., Phys. Rev. 140, A1581 (1965).CrossRefGoogle Scholar
  13. 13.
    O. I. Shulishova, Inst. Metallofiziki AN (1966g); also Neorganicheski Mat. 8, 1434 (1966).Google Scholar
  14. 14.
    V. Sadagopan, E. Pollard and H. C. Gatos, Sol. St. Comm. 3, 97 (1965).CrossRefGoogle Scholar
  15. 15.
    B. T. Matthias, V. B. Compton and E. Corenzwit, J. Phys. Chem. Soc. 19, 130 (1961).CrossRefGoogle Scholar
  16. 16.
    K. Inoue, K. Tachikawa and Y. Iwase, App. Phys. Lett. 18, 235 (1971).CrossRefGoogle Scholar

References

  1. 1.
    B. T. Matthias, “Superconductivity in the Periodic System,” Vol. II of Progress in Low Temperature Physics, C. J. Gorter, ed., p. 138 (1957).Google Scholar
  2. 2.
    J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 106, 162 (1957); 108 1175 (1957).CrossRefGoogle Scholar
  3. 3.
    V. L. Ginzburg and L. D. Landau, JETP 20, 1064 (1950).Google Scholar
  4. 4.
    L. P. Gor’Kov, Soviet Physics — JETP 10, 998 (1960).Google Scholar
  5. 5.
    B. B. Goodman, IBM J. Res. Develop. 6, 63 (1962).CrossRefGoogle Scholar
  6. 6.
    T. G. Berlincourt and R. R. Hake, Phys. Rev. 131, 140 (1963).CrossRefGoogle Scholar
  7. 7.
    A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).CrossRefGoogle Scholar
  8. 8.
    R. A. Ferrell, Phys. Rev. Lett. 3, 262 (1959).CrossRefGoogle Scholar
  9. 9.
    N. R. Werthamer, E. Helf and P. C. Hohenberg, Phys. Rev. 147 295 (1966).CrossRefGoogle Scholar
  10. 10.
    D. Saint-James and P. G. deGennes, Phys. Lett. 7, 306 (1964).Google Scholar
  11. 11.
    J. P. Burger and D. Saint-James, in Superconductivity (R. D. Parks, editor; Marcel Dekkes New York, 1969) p. 977.Google Scholar
  12. 12.
    G. R. Hu and V. Korenman, Phys. Rev. 185, 672 (1969).CrossRefGoogle Scholar
  13. 13.
    A. P. Van Gelder, Phys. Rev. Lett. 20, 1435 (1968).CrossRefGoogle Scholar
  14. 14.
    S. J. Williamson and J. K. Furdyna, Phys. Lett. 23, 29 (1966).CrossRefGoogle Scholar
  15. 15.
    D. C. Hill and R. M. Rose, Met. Trans. 2, 1433 (1971).CrossRefGoogle Scholar
  16. 16.
    see e.g. Y. B. Kim and M. J. Stephen, in Superconductivity (R. D. Parks, editor; Marcel Dekker, New York, 1969) p.1107.Google Scholar
  17. 17.
    Y. B. Kim, C. F. Hempstead and A. R. Strnad, Phys. Rev. Lett. 9, 306 (1962).CrossRefGoogle Scholar
  18. 18.
    D. D. Morrison and R. M. Rose, Phys. Rev. Lett. 25, 356 (1970).CrossRefGoogle Scholar
  19. 19.
    K. Yamafuji and F. Irie, Phys. Lett. 25A, 356 (1970).Google Scholar
  20. 20.
    H. Trauble and U. Essmann, J. App. Phys. 39, 4052 (1968).CrossRefGoogle Scholar
  21. 21.
    D. C. Hill, D. D. Morrison and R. M. Rose, J. App. Phys. 40, 5160 (1969).CrossRefGoogle Scholar
  22. 22.
    J. E. Kunzler, E. Buehler, F. S. L. Hsu and J. H. Wernick, Phys. Rev. Lett. 6, 89 (1961).CrossRefGoogle Scholar
  23. 23.
    See RCA Review Vol. 25.Google Scholar
  24. 24.
    J. K. Hulm, J. R. Gavaler, M. A. Janocko, A. Patterson and C. K. Jones, to appear in Proc. 12th Int. Conf. on Low-Temp. Physics (paper 8Xa 3).Google Scholar
  25. 25.
    S. Foner, E. J. McNiff, Jr., B. T. Matthias, T. H. Geballe, R. H. Willens and E. Corenzwit, Phys. Lett. 31A, 349 (1970).Google Scholar
  26. 26.
    J. G. Kohr, T. Eagar and R. M. Rose, submitted to Met. Trans.Google Scholar
  27. 27.
    C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).CrossRefGoogle Scholar
  28. 28.
    See P. G. deGennes Superconductivity of Metals and Alloys, (Benjamin, New York 1966)Google Scholar
  29. or A. L. Fetter and P. C. Hohenberg, Ch. 14 of Superconductivity (R. D. Parks, ed; Marcel Dekker, New York, 1969) for details.Google Scholar
  30. 29.
    Rutherford Laboratory Reprint RPP?Z 73, November, 1969; by J. D. Lewin, P. F. Smith, A. H. Spurway, C. R. Walters and M. N. Wilson.Google Scholar
  31. 30.
    H. E. Cline, B. P. Strauss, R. M. Rose and J. Wulff, Trans. ASM 59, 133 (1966).Google Scholar
  32. 31.
    P. F. Smith, M. N. Wilson, C. R. Walters and J. D. Lewin, Proc. 1968 Summer Study on Superconducting Devices and Accelerators, p.913 (Brookhaven National Laboratory, 1969).Google Scholar
  33. 32.
    A. D. McInturff to be published.Google Scholar
  34. 33.
    S. L. Wipf in Proc. 1968 Summer Study on Superconducting Devices and Accelerators (Brookhaven National Laboratory BNL 50155 (C-55) 1969) p. 511.Google Scholar
  35. 34.
    C. P. Bean, Air Force Materials Laboratory Technical Report AFML-TR-65-431 (March, 1966), Section I.Google Scholar
  36. 35.
    J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 16, 734 (1966).CrossRefGoogle Scholar
  37. 36.
    J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965).CrossRefGoogle Scholar
  38. 37.
    Y. Shapira and L. J. Neuringer, Phus. Rev. 154, 375 (1967).CrossRefGoogle Scholar
  39. 38.
    C. Caroli, P. G. deGennes and J. Matricon, Phys. Lett. 9, 307 (1964).CrossRefGoogle Scholar
  40. 39.
    C. Caroli and K. Maki, Phys. Rev. 159, 306 (1967).CrossRefGoogle Scholar
  41. 40.
    C. R. Haden and W. H. Hartwig, Phys. Rev. 148, 313 (1966).CrossRefGoogle Scholar
  42. 41.
    J. M. Victor and W. H. Hartwig, J. Appl. Phys. 39, 2539 (1968).CrossRefGoogle Scholar
  43. 42.
    J. P. Turneaure and I. Weissman, J. Appl. Phys. 39, 4417 (1968).CrossRefGoogle Scholar
  44. 43.
    P. Kneisel, O. Stoltz and J. Halbritter, Institut fur Experimentelle Kernphyski Notiz Nr. 138, Feb. 1971.Google Scholar
  45. 44.
    J. P. Turneaure and N. T. Viet, Appl. Phys. Lett. 16, 333 (1970).CrossRefGoogle Scholar
  46. 45.
    D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).CrossRefGoogle Scholar
  47. 46.
    R. W. Meyerhoff, p. 23 of Ref. 33.Google Scholar
  48. 47.
    I. Weissman, p. 32 of Ref. 33.Google Scholar
  49. 48.
    H. Martens, H. Diepers and R. K. Sun, Phys. Lett. 34A, 439 (1971).Google Scholar
  50. 49.
    M. Rabinowitz, J. Appl. Phys. 42, 88 (1971).CrossRefGoogle Scholar
  51. 50.
    J. W. Hafstrom, M. L. A. MacVicar and R. M. Rose, Phys. Lett. 30A, 379 (1969).Google Scholar
  52. 51.
    J. W. Hafstrom and M. L. A. MacVicar, Phys. Rev. 2B, 4511 (1970).Google Scholar
  53. 52.
    J. Halbritter, J. Appl. Phys. 42, 82 (1971).CrossRefGoogle Scholar
  54. 53.
    M. L. A. MacVicar, S. M. Freake and C. J. Adkins, J. Vac. Sci. Tech. 6, 717 (1969).CrossRefGoogle Scholar
  55. 54.
    S. I. Ochiai, M. L. A. MacVicar and R. M. Rose, Sol. St. Comm. 8, 1031 (1970).CrossRefGoogle Scholar
  56. 55.
    M. L. A. MacVicar and R. M. Rose, J. Appl. Phys. 39, 1721 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Robert M. Rose
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations