Advertisement

The Wheats and Their Relatives

  • Ernest R. Sears

Abstract

The wheat genus Triticum L. belongs to the subtribe Triticinae of the tribe Triticeae of the family Gramineae. Other genera of the Triticinae are Agropyron (the wheat grasses), Secale (rye), and Haynaldia. Until recently, another genus, Aegilops, was recognized, but after the discovery that at least one of the three genomes (basic sets of seven pairs of chromosomes) of hexaploid or common wheat had come from Aegilops, there was no way to maintain Aegilops as a separate genus and still continue to put all the wheat species in the genus Triticum. Tetraploid wheat, if it is an amphiploid of diploid Triticum and a diploid Aegilops species, could not be designated Triticum; nor could hexaploid wheat, an amphiploid of tetraploid Triticum and another diploid Aegilops, be included in the same genus as only one of its parents.

Keywords

Common Wheat Hexaploid Wheat Wheat Chromosome Substitution Line Tetraploid Wheat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, L. M. and C. J. Driscoll, 1967 The production and breeding behaviour of a monosomic alien substitution line. Can. J. Genet. Cytol. 9: 399–403.Google Scholar
  2. Athwal, R. S. and G. Kimber, 1972 The pairing of an alien chromosome with homoeologous chromosomes of wheat. Can. J. Genet. Cytol. 14: 325–333.Google Scholar
  3. Bhowal, J. G., 1964 An unusual transmission rate of the deficient male gamete in a substitution monosomic of chromosome 3D in wheat. Can. J. Bot. 42: 1321–1328.CrossRefGoogle Scholar
  4. Bielig, L. M. and C. J. Driscoll, 1970 Substitution of rye chromosome 5RL for chromosome 5B and its effect on chromosome pairing. Genetics 65: 241–247.PubMedGoogle Scholar
  5. Bielig, L. M. and C. J. Driscoll, 1973 Release of a series of MAS lines. In Proceedings of the Fourth International Wheat Genetics Symposium, pp. 893–937, Missouri Agricultural Experimental Station, Columbia, Missouri.Google Scholar
  6. Bowden, W. M., 1959 The taxonomy and nomenclature of the wheats, barleys, and ryes and their wild relatives. Can. J. Bot. 37: 657–684.CrossRefGoogle Scholar
  7. Brewer, G., C. F. Sing and E. R. Sears, 1969 Studies of isozyme patterns in nullisomic-tetrasomic combinations of hexaploid wheat. Proc. Natl. Acad. Sci. USA 64: 1224–1229.PubMedCrossRefGoogle Scholar
  8. Cauderon, Y., 1966 Étude cytogénétique de l’évolution du material issu de croisement entre Triticum aestivum et Agropyron intermedium. I. Création de types d’addition stable. Ann. Amelior. Plant. (Paris) 16: 43–70.Google Scholar
  9. Chapman, V. and R. Riley, 1970 Homoeologous meiotic chromosome pairing in Triticum aestivum in which chromosome 5B is replaced by an alien homoeologue. Nature (Lond. ) 226: 376–377.CrossRefGoogle Scholar
  10. D’Amato, F., G. T. Scarascia Mugnozza and A. Bozzini, 1964 Mutanti vitali di frumento duro ottenuti del laboratorio per le applicazioni in agricoltura de C. N. E. N. con impiego di radiazioni ionizzanti e mutageni chimici. Genet. Agrar. 18: 132–141.Google Scholar
  11. Darvey, N. L. and C. J. Driscoll, 1972 Evidence against somatic association in wheat. Chromosoma 36: 140–149.Google Scholar
  12. Driscoll, C. J., 1960 Cytogenetical studies of wheat in relation to monosomic analyses and disease resistance derived from Agropyron elongatum. J. Austral. Inst. Agric. Sci. 26: 372.Google Scholar
  13. Driscoll, C. J., 1972 Genetic suppression of homoeologous pairing in hexaploid wheat. Can. J. Genet. Cytol. 14: 39–42.Google Scholar
  14. Driscoll, C. J. and E. R. Sears, 1971 Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron. Abs. 1971: 6.Google Scholar
  15. Eig, A., 1929 Monographisch-Kritische Übersicht der Gattung Aegilops. Repert. Spec. Nov. Reg. Feg. Beih. 55: 1–228.Google Scholar
  16. Endrizzi, J. E. and R. J. Kohel, 1966 Use of telosomes in mapping three chromosomes in cotton. Genetics 54: 535–550.PubMedGoogle Scholar
  17. Evans, L. E. and B. C. Jenkins, 1960 Individual Secale cereale chromosome additions to Triticum aestivum. I. The addition of individual “Dakold” fall rye chromosomes to “Kharkov” winter wheat and their subsequent identification. Can. J. Genet. Cytol. 2: 205–215.Google Scholar
  18. Feldman, M., 1966a Identification of unpaired chromosomes in Fx hybrids involving Triticum aestivum and T. timopheevii. Can. J. Genet. Cytol. 8: 144–151.Google Scholar
  19. Feldman, M., 1966b The effect of chromosomes 5B, 5D, and 5A on Chromosomal pairing in Triticum aestivum. Proc. Natl. Acad. Sci. USA 55: 1447–1453.Google Scholar
  20. Feldman, M. and T. Mello-Sampayo, 1967 Suppression of homoeologous pairing in hybrids of polyploid wheats X Triticum speltoides. Can. J. Genet. Cytol. 9: 307–313.Google Scholar
  21. Feldman, M., T. Mello-Sampayo and E. R. Sears, 1966 Somatic association in Triticum aestivum. Proc. Natl. Acad. Sci. USA 56: 1192–1199.PubMedCrossRefGoogle Scholar
  22. Johnson, B. L., 1972 Protein electrophoretic profiles and the origin of the B genome of wheat. Proc. Natl. Acad. Sci. USA 69: 1398–1402.PubMedCrossRefGoogle Scholar
  23. Johnson, R. and G. Kimber, 1967 Homoeologous pairing of a chromosome from Agropyron elongatum with those of Triticum aestivum and Aegilops speltoides. Genet. Res. 10: 63–71.CrossRefGoogle Scholar
  24. Kempanna, C. and R. Riley, 1962 Relationships between the genetic effects of deficiencies for chromosomes III and V on meiotic pairing in Triticum aestivum. Nature (Lond. ) 195: 1270–1273.CrossRefGoogle Scholar
  25. Kempanna, C. and R. Riley, 1964 Secondary association between genetically equivalent bivalents. Heredity 18: 287–306.Google Scholar
  26. Kihara, H., 1963 Nucleus and chromosome substitution in wheat and Aegilops. II. Chromosome substitution. Sciken Ziho 16: 13–23.Google Scholar
  27. Kihara, H. and S. Wakakuwa, 1935 Veränderung von Wuchs, Fertilität und Chromosomenzahl in den Folgegenerationen der 40-chromosomigen Zwerge bei Weizen. Jap. J. Genet. 11: 102–108.CrossRefGoogle Scholar
  28. Kimber, G., 1967 The addition of the chromosomes of Aegilops umbellulata to Triticum aestivum (var. Chinese Spring). Genet. Res. 9: 111–114.CrossRefGoogle Scholar
  29. Kimber, G. and R. S. Athwal, 1972 A reassessment of the course of evolution of wheat. Proc. Natl. Acad. Sci. USA 69: 912–915.PubMedCrossRefGoogle Scholar
  30. Kimber, G. and E. R. Sears, 1968 Nomenclature for the description of aneuploids in the Triticinae. In Proceedings of the Third International Wheat Genetics Symposium, pp. 468–473, Australian Academy of Science, Canberra.Google Scholar
  31. Knott, D. R., 1961 The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Plant Sci. 41: 109–123.CrossRefGoogle Scholar
  32. Knott, D. R., 1968 Translocations involving Triticum chromosomes carrying rust resistance. Can. J. Genet. Cytol. 10: 695–696.Google Scholar
  33. Knott, D. R., 1971 The transfer of genes for disease resistance from alien species to wheat by induced translocations. In Mutation Breeding for Disease Resistance, pp. 67–77, International Atomic Energy Agency, Vienna.Google Scholar
  34. Law, C. N., 1967 The location of genetic factors controlling a number of quantitative characters in wheat. Genetics 56: 445–461.PubMedGoogle Scholar
  35. Law, C. N., 1968 Genetic analysis using intervarietal chromosome substitutions. In Proceedings of the Third International Wheat Genetics Symposium, pp. 331–342, Australian Academy of Science, Canberra.Google Scholar
  36. Lee, Y. H., E. N. Larter and L. E. Evans, 1969 Homoeologous relationship of rye chromosome VI with two homoeologous groups from wheat. Can. J. Genet. Cytol. 11: 803–809.Google Scholar
  37. Li, H. W., W. K. Pao and C. H. Li, 1945 Desynapsis in common wheat. Am. J. Bot. 32: 92–101.CrossRefGoogle Scholar
  38. McFadden, E. S. and E. R. Sears, 1946 The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37:81–89, 107–116.Google Scholar
  39. Mcintosh, R. A., 1973 Gene symbols in wheat. In Proceedings of the Fourth International Wheat Genetics Symposium, pp. 893–937, Missouri Agricultural Experimental Station, Columbia, Missouri.Google Scholar
  40. Mackey, J., 1954 Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40: 65–180.Google Scholar
  41. Mackey, J., 1960 Radio Genetics in Triticum. Genet. Agrar. 12: 201–230.Google Scholar
  42. Mackey, J., 1968 Relationships in the Triticinae. In Proceedings of the Third International Wheat Genetics Symposium, pp. 39–50, Australian Academy Science, Canberra.Google Scholar
  43. Matsumura, S., 1952 Chromosome analysis of the dinkel genome in the offspring of a pentaploid wheat hybrid. I. Nullisomics deficient for a pair of D-chromosomes. Cytologia (Tokyo) 4: 265–287.CrossRefGoogle Scholar
  44. Mello-Sampayo, T., 1971 Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nat. New Biol. 230: 22–23.PubMedGoogle Scholar
  45. Mello-Sampayo, T. and A. P. Canas, 1973 Suppressors of meiotic chromosome pairing in common wheat. In Proceedings of the Fourth International Wheat Genetics Symposium, pp. 709–713, Missouri Agricultural Experimental Station., Columbia, Missouri.Google Scholar
  46. Mettin, D., W. D. Bluethner and G. Schlegel, 1973 Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. In Proceedings of the Fourth International Wheat Genetics Symposium, pp. 179–184, Missouri Agricultural Experimental Station., Columbia, Missouri.Google Scholar
  47. Mochizuki, A., 1962 Agropyron addition lines of durum wheat. Sciken Ziho 13: 133–138.Google Scholar
  48. Mochizuki, A., 1970 Production of three monosomic series in emmer and common wheat. Sciken Ziho 22: 39–49.Google Scholar
  49. Morris, R. and E. R. Sears, 1967 The Cytogenetics of wheat and its relatives. In Wheat and Wheat Improvement, edited by L. P. Reitz and K. S. Quisenberry, pp. 19–87, American Society of Agronomy, Madison, Wisconsin.Google Scholar
  50. Muramatsu, M., 1963 Dosage effect of the spelta gene q of hexaploid wheat. Genetics 48: 469–482.PubMedGoogle Scholar
  51. Natarajan, A. T., S. M. Sikka and M. S. Swaminathan, 1958 Polyploidy, radiosensitivity, and mutation frequency in wheats. Proc. 2nd UN Int. Conf. Peaceful Uses Atom. Energy. Geneva 27: 321–331.Google Scholar
  52. Neatby, K. W., 1933 A chlorophyll mutation in wheat. J. Hered. 24: 159–162.Google Scholar
  53. Okamoto, M., 1957 Asynaptic effect of chromosome V. Wheat Info. Serv. 5: 6.Google Scholar
  54. O’Mara, J. G., 1940 Cytogenetic studies on Triticale. I. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25: 401–408.PubMedGoogle Scholar
  55. O’Mara, J. G., 1951 Cytogenetic studies on Triticale. II. The kinds of intergeneric chromosome addition. Cytologia (Tokyo) 16: 225–232.CrossRefGoogle Scholar
  56. Person, C. L., 1956 Some aspects of monosomic wheat breeding. Can. J. Bot. 34: 60–70.CrossRefGoogle Scholar
  57. Pettigrew, R., 1972 Studies on a group of chlorophyll mutants in hexaploid wheat. Ph. D. Thesis, University of New South Wales, Sydney, Australia.Google Scholar
  58. Pettigrew, R., C. J. Driscoll and K. G. Rienits, 1969 A spontaneous chlorophyll mutant in hexaploid wheat. Heredity 24: 481–487.CrossRefGoogle Scholar
  59. Prabhakara Rao, M. V. and W. J. Washington, 1969 EMS-induced chlorophyll defective sectors in hexaploid wheat. Proc. Symp. Radiations Radiomimetic Subst. Mut. Breed. ( Bombay ), pp. 228–233.Google Scholar
  60. Riley, R., 1960 The meiotic behaviour, fertility and stability of wheat-rye chromosome addition lines. Heredity 14: 89–100.CrossRefGoogle Scholar
  61. Riley, R., 1966 The genetic regulation of meiotic behaviour in wheat and its relatives. Proceedings of the Second International Wheat Genetics Symposium, Lund, 1963, Hereditas Suppl. Vol. 2: 395–408.Google Scholar
  62. Riley, R. and V. Chapman, 1958a The production and phenotypes of wheat-rye chromosome addition lines. Heredity 12: 301–315.CrossRefGoogle Scholar
  63. Riley, R. and V. Chapman, 1958b Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature (. Lond. ) 182: 713–715.Google Scholar
  64. Riley, R. and V. Chapman, 1964 Cytological determination of the homoeology of chromosomes of Triticum aestivum. Nature (Lond. ) 203: 156–158.CrossRefGoogle Scholar
  65. Riley, R. and V. Chapman, 1966 Estimates of the homoeology of wheat chromosomes by measurements of differential affinity at meiosis. In Chromosome Manipulations and Plant Genetics, edited by R. Riley and K. R. Lewis pp. 46–58, Oliver and Boyd, Edinburgh.Google Scholar
  66. Riley, R. and V. Chapman, 1967 Effect of 5BS in suppressing the expression of altered dosage of 5BL on meiotic chromosome pairing in Triticum aestivum. Nature (Lond. ) 216: 60–62.CrossRefGoogle Scholar
  67. Riley, R. and C. Kempanna, 1963 The homoeologous nature of the non-homologous meiotic pairing in Triticum aestivum deficient for chromosome V (5B). Heredity 18: 287–306.CrossRefGoogle Scholar
  68. Riley, R. and G. Kimber, 1966 The transfer of alien genetic variation to wheat. Rep. Plant Breed. Inst. (Cambridge) 1964–1965: 6–36.Google Scholar
  69. Riley, R. and C. N. Law, 1965 Genetic variation in chromosome pairing. Adv. Genet. 13: 57–114.CrossRefGoogle Scholar
  70. Riley, R., V. Chapman and G. Kimber, 1959 Genetic control of chromosome pairing in intergeneric hybrids with wheat. Nature (Lond. ) 183: 1244–1246.CrossRefGoogle Scholar
  71. Riley, R., G. Kimber and V. Chapman, 1961 Origin of genetic control of diploid-like behavior of polyploid wheat. J. Hered. 52: 22–25.Google Scholar
  72. Riley, R., V. Chapman and R. C. F. Macer, 1966a The homoeology of an Aegilops chromosome causing stripe rust resistance. Can. J. Genet. Cytol. 88: 616–630.Google Scholar
  73. Riley, R., V. Chapman, R. M. Young and A. M. Belfied, 1966b The control of meiotic chromosome pairing by the chromosomes of homoeologous group 5 of Triticum aestivum. Nature (Lond. ) 212: 1475–1477.Google Scholar
  74. Riley, R., H. Coucoli and V. Chapman, 1967 Chromosomal interchanges and the phylogeny of wheat. Heredity 22: 233–248.CrossRefGoogle Scholar
  75. Riley, R., V. Chapman and R. Johnson, 1968 The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res., 12: 199–219.CrossRefGoogle Scholar
  76. Sarkar, P. and G. L. Stebbins, 1956 Morphological evidence concerning the origin of the B genome in wheat. Am. J. Bot. 43: 297–304.CrossRefGoogle Scholar
  77. Schlehuber, A. M. and E. E. Sebesta, 1959 Progress in wheat-grass breeding. Proc. Okla. Acad. Sci. 39: 6–16.Google Scholar
  78. Sears, E. R., 1944 Cytogenetic studies with polyploid species of wheat. II. Additional Chromosomal aberrations in Triticum vulgare. Genetics 29: 232–246.PubMedGoogle Scholar
  79. Sears, E. R., 1952 Misdivision of univalents in common wheat. Chromosoma 4: 535–550.PubMedCrossRefGoogle Scholar
  80. Sears, E. R., 1954 The aneuploids of common wheat. Mo. Agric. Exp. Stn. Res. Bull. 572: 1–59.Google Scholar
  81. Sears, E. R., 1956 The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Sym. Biol. 9: 1–22.Google Scholar
  82. Sears, E. R., 1965 Nullisomic-tetrasomic combinations in hexaploid wheats. In Chromosome Manipulations and Plant Genetics, edited by R. Riley and K. R. Lewis, Suppl. to Heredity 20: 29–45.Google Scholar
  83. Sears, E. R., 1966 Chromosome mapping with the aid of telocentrics. Proceedings of the Second International Wheat Genetics Symposium, Lund, 1963 Hereditas Suppl. Vol. 2: 370–381.Google Scholar
  84. Sears, E. R., 1967 Induced transfer of hairy neck from rye to wheat. Z. Pflanzenzuecht. 57: 4–25.Google Scholar
  85. Sears, E. R., 1969 Wheat Cytogenetics. Annu. Rev. Genet. 3: 451–468CrossRefGoogle Scholar
  86. Sears, E. R., 1912a Chromosome engineering in wheat. Stadler Genet. Symp. 4: 23–38.Google Scholar
  87. Sears, E. R., 1972b The nature of mutation in hexaploid wheat. Symp. Biol. Hung. 12: 73–82.Google Scholar
  88. Sears, E. R., 1972c Reduced proximal crossing-over in telocentric chromosomes of wheat. Genêt. Ibêr., 24: 233–239.Google Scholar
  89. Sears, E. R. and M. Okamoto, 1958 Intergenomic chromosome relationships in hexaploid wheat. Proc. XInt. Congr. Genet. 2: 258–259.Google Scholar
  90. Sears, E. R., W. Q. Loegering and H. A. Rodenhiser, 1957 Identification of chromosomes carrying genes for stem rust resistance in four varieties of wheat. Agron. J. 49: 208–212.CrossRefGoogle Scholar
  91. Shama Rao, H. K. and E. R. Sears, 1964 Chemical mutagenesis in Triticum aestivum. Mutat. Res. 1: 387–399.CrossRefGoogle Scholar
  92. Shands, H. and G. Kimber, 1973 Reallocation of the genomes of Triticum timopheevii Zhuk. In Proceedings of the Fourth International Wheat Genetics Symposium, pp. 101–108, Missouri Agricultural Experimental Station, Columbia, Missouri.Google Scholar
  93. Sheen, S. J. and L. A. Synder, 1964 Studies on the inheritance of resistance to six stem rust cultures using chromosome substitution lines of a Marquis wheat selection. Can. J. Genet. Cytol 6: 74–82.Google Scholar
  94. Sheen, S. J. and L. A. Synder, 1965 Studies on the inheritance of resistance to six stem rust cultures using chromosome substitution lines of a Kenya wheat. Can. J. Genet. Cytol. 7: 374–387.Google Scholar
  95. Siddiqui, K. A., 1972 The influence of the B genome on chromosome pairing in trigeneric Aegilops X Triticum X Secale hybrids. Hereditas 70: 97–104.CrossRefGoogle Scholar
  96. Smith, L., 1939 Mutants and linkage studies in Triticum monococcum and T. aegilopoides. Mo. Agric. Exp. Stn. Res. Bull. 298: 26.Google Scholar
  97. Tsunewaki, K., 1964 The transmission of the monosomic condition in a wheat variety, Chinese Spring. II. A critical analysis of nine year records. Jap. J. Genet. 38: 270–281.CrossRefGoogle Scholar
  98. Unrau, J., 1958 Genetic analysis of wheat chromosomes. I. Description of proposed methods. Can. J. Plant Sci. 38: 415–418.CrossRefGoogle Scholar
  99. Wagenaar, E. B., 1961 Studies on the genome constitution of Triticum timopheevi Zhuk. I. Evidence for genetic control of meiotic irregularities in tetraploid hybrids. Can. J. Genet. Cytol. 3: 204–225.Google Scholar
  100. Waines, J. G. and B. L. Johnson, 1972 Genetic differences between Aegilops longissima, A. sharonensis, and A. bicornis. Can. J. Genet. Cytol. 14: 411–416.Google Scholar
  101. Washington, W. J. and E. R. Sears, 1970 Ethyl methanesulfonate-induced chlorophyll mutations in Triticum aestivum. Can. J. Genet. Cytol. 12: 851–859.PubMedGoogle Scholar
  102. Wienhues-Ohlendorf, A., 1960 Die Ertragsleistung rostresistenter 44- und 42-chromosomiger Weizenquecken-Bastarde. Zuchter 30: 194–202.Google Scholar
  103. Zeller, F. J., 1972 Cytologischer Naschweis einer Chromosomensubstitution in dem Weizenstamm Salzmiinde 14/44 (T. aestivum L. ). Z. Pflanzenzuecht. 67: 90–94.Google Scholar
  104. Zeller, F. J. and G. Fischbeck, 1971 Cytologische Untersuchungen zur Identifizierung des Fremdchromosoms in der Weizensorte Zorba (W565). Z. Pflanzenzuecht. 66: 189–202.Google Scholar
  105. Zeller, F. J. and S. Sastrosumarjo, 1972 Zur Cytologic der Weizensorte Weique (T. aestivum L. ). Z. Pflanzenzuecht. 68: 312–321.Google Scholar
  106. Zohary, D. and M. Feldman, 1962 Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16: 44–61.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Ernest R. Sears
    • 1
  1. 1.Agricultural Research Service, United States Department of AgricultureUniversity of MissouriColumbiaUSA

Personalised recommendations