Chlamydomonas reinhardi

  • R. P. Levine

Abstract

Only a few species of algae have been exploited for genetic studies. So far the most commonly used species is the unicellular green alga Chlamydomonas reinhardi (see Figure 1). Its principal virtues are ease of cultivation in the laboratory, a simple and rapid life cycle, and a rather well-known Mendelian Genetics. Among the cellular phenomena that have been studied with C. reinhardi are the Genetics of photosynthesis (Levine, 1969; Levine and Goodenough, 1970), the Genetics of the flagellar apparatus (Starling and Randall, 1971), and the Genetics of the cell wall. Of particluar interest is the Genetics of the chloroplast (Levine and Goodenough, 1970; Surzycki et al., 1970) and the presence of a non-Mendelian, uniparental system of inheritance which may govern a portion of the genetic function of chloroplasts and mitochondria (Gillham, 1969; Surzycki and Gillham, 1971; Sager, 1972).

Keywords

Starch Dioxide Agar Recombination Chloroform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Chiang, K. S. and N. Sueoka, 1967 Replication of chloroplast DNA in Chlamydonomas reinhardi during vegetative cell cycle, its mode and regulation. Proc. Natl. Acad. Sci. USA 57: 1506–1513.PubMedCrossRefGoogle Scholar
  2. Davies, D. R. and A. Plaskitt, 1971 Genetical and structural analyses of cell-wall formation in Chlamydomonas reinhardi. Genet. Res. 17: 33–43.CrossRefGoogle Scholar
  3. Ebersold, W. T., R. P. Levine, E. E. Levine and M. A. Olmsted, 1962 Linkage maps in Chlamydomonas reinhardi. Genetics 47: 531–543.PubMedGoogle Scholar
  4. Epel, B. L. and R. P. Levine, 1971 Mutant strains of Chlamydomonas reinhardi with lesions on the oxidizing side of photosystem II. Biochim. Biophys. Acta 226: 154–170.PubMedCrossRefGoogle Scholar
  5. Epel, B. L., W. Butler and R. P. Levine, 1972 A spectroscopic analysis of low-fluorescent mutants of Chlamydomonas reinhardi blocked in their water-splitting oxygen-evolving apparatus. Biochim. Biophys. Acta 275: 395–400.PubMedCrossRefGoogle Scholar
  6. Gillham, N. W., 1969 Uniparental inheritance in Chlamydomonas reinhardi. Am. Nat. 103: 355–388.CrossRefGoogle Scholar
  7. Gorman, D. S. and R. P. Levine, 1965 Cytochrome and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl Acad. Sci. USA 54: 1665–1669.PubMedCrossRefGoogle Scholar
  8. Hastings, P. J., E. E. Levine, E. Cosbey, M. O. Hudlock, N. W. Gillham, S.J. Surzycki, R. Loppes and R. P. Levine, 1965 The linkage groups of Chlamydomonas reinhardi. Microb. Genet. Bull. 23: 17–19.Google Scholar
  9. Hoober, J. K. and G. Blobel, 1969 Characterization of the chloroplastic and cytoplasmic ribosomes of Chlamydomonas reinhardi. J. Mol. Biol. 41: 121–138.PubMedCrossRefGoogle Scholar
  10. Howell, S. H. and J. A. Naliboff, 1973 Conditional mutants in Chlamydomonas reinhardi blocked in the vegetative cell cycle. I. An analysis of cell cycle block points. J. Cell Biol. 57: 760–772.PubMedCrossRefGoogle Scholar
  11. Hyams, J. and D. R. Davies, 1972 The induction and characterization of cell wall mutants of Chlamydomonas reinhardi. Mutat. Res. 14: 381–389.CrossRefGoogle Scholar
  12. Levine, R. P., 1969 The analysis of photosynthesis using mutant strains of algae and higher plants. Annu. Rev. Plant Physiol. 20: 523–540.CrossRefGoogle Scholar
  13. Levine, R. P., 1971a Interactions between nuclear and organelle genetic systems. Brookhaven Symp. Biol. 23: 503–532.Google Scholar
  14. Levine, R. P., 1971b Preparation and properties of mutant strains of Chlamydomonas reinhardi. In Methods in Enzymology, Vol. 23, edited by A. San Pietro Academic Press, New York.Google Scholar
  15. Levine, R. P. and W. T. Ebersold, 1960 The Genetics and cytology of Chlamydomonas. Annu. Rev. Microbiol. 14: 197–216.PubMedCrossRefGoogle Scholar
  16. Levine, R. P. and U. W. Goodenough, 1970 The Genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardi. Annu. Rev. Genet. 4: 397–408.PubMedCrossRefGoogle Scholar
  17. Loppes, R., 1970 Selection of arginine-requiring mutants after treatment with three mutagens. Experientia (Basel) 26: 660–661.CrossRefGoogle Scholar
  18. Loppes, R. and P.J. Strijkert, 1972 Arginine metabolism in Chlamydomonas reinhardi. Mol. Gen. Genet. 116: 248–257.PubMedCrossRefGoogle Scholar
  19. Loppes, R., R. Matagne and P.J. Strijkert, 1972 Complementation at the arg–7 locus in Chlamydomonas reinhardi. Heredity 28: 239–251.CrossRefGoogle Scholar
  20. Mcvittie, A., 1972a Genetic studies on flagellum mutants of Chlamydomonas reinhardi. Genet. Res. 9: 157–164.CrossRefGoogle Scholar
  21. Mcvittie, A., 1972b Flagellum mutants of Chlamydomonas reinhardi. J. Gen. Microbiol. 71: 525–540.PubMedGoogle Scholar
  22. Ris, H. and W. Plaut, 1962 Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J. Cell. Biol. 13: 383–391.PubMedCrossRefGoogle Scholar
  23. Sager, R. 1972 Cytoplasmic Genes and Organelles, Academic Press, New York.Google Scholar
  24. Sato, V. L., R. P. Levine and J. Neumann, 1971 Photosynthetic phosphorylation in Chlamydomonas reinhardi: Effects of a mutation altering an ATP-synthesizing enzyme. Biochim. Biophys. Acta 253: 437–448.PubMedCrossRefGoogle Scholar
  25. Schimmer, O. and C. G. Arnold, 1970a Hin- und Riicksegregation eines ausserkaryotischen Gens bei Chlamydomonas reinhardii. Mol. Gen. Genet. 108: 33–40.PubMedCrossRefGoogle Scholar
  26. Schimmer, O. and C. G. Arnold, 1970b Untersuchungen iiber Reversions-und Segregationsverhalten eines ausserkaryotischen Gens von Chlamydomonas reinhardi zur Bestimmung des Erbtragers. Mol. Gen. Genet. 107: 281–290.CrossRefGoogle Scholar
  27. Schimmer, O. and C. G. Arnold, 1970c Ober dei Zahl der Kopien eines ausserkaryotischen Gens bei Chlamydomonas reinhardi. Mol. Gen. Genet. 107: 366–371.PubMedCrossRefGoogle Scholar
  28. Starling, D. and J. Randall, 1971 The flagella of temporary dikaryons of Chlamydomonas reinhardi. Genet. Res. 18: 107–113.CrossRefGoogle Scholar
  29. Sueoka, N., 1960 Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardii. Proc. Natl. Acad. Sci. USA 46: 83–91.PubMedCrossRefGoogle Scholar
  30. Surzycki, S. J. and N. W. Gillham, 1971 Organelle mutations and their expression in Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA 68: 1301–1306.PubMedCrossRefGoogle Scholar
  31. Surzycki, S. J. and P. J. Hastings, 1961 Control of chloroplast RNA synthesis in Chlamydomonas reinhardi. Nature (Lond.) 220: 786–787.CrossRefGoogle Scholar
  32. Surzycki, S. J., U. W. Goodenough, R. P. Levine and J. J. Armstrong, 1970 Nuclear and chloroplast control of chloroplast structure and function in Chlamydomonas reinhardi. Symp. Soc. Exp. Biol. 24: 13–37.PubMedGoogle Scholar
  33. Witman, G. B., K. Carlson and J. L. Rosenbaum, 1972a Chlamydomonas flagella. II. The distribution of tubulins 1 and 2 in the outer double microtubules. J. Cell Biol. 54: 540–555.PubMedCrossRefGoogle Scholar
  34. Witman, G. B., K. Carlson, J. Berliner and J. L. Rosenbaum, 1972b Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J. Cell Biol. 54: 507–539.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • R. P. Levine
    • 1
  1. 1.The Biological LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations