The Tomato

  • Charles M. Rick


The cultivated tomato (Lycopersicon esculentum Miller) is a genetically well-endowed species of the potato family (Solanaceae). Although normally grown as an annual plant, it can be asexually propagated by several techniques as a facultative perennial. It is easily and widely cultivated, its growth and reproduction not being restricted by day length or any other special requirement. The tomato phenotype, particularly that of leaf shape, texture, and color, is of such a nature that a great variety of heritable modifications can be readily recognized (Kruse, 1968). While the tomato is normally automatically self-pollinated, controlled pollinations can be made readily to produce hybrid seed, even on a large scale. A full-grown plant produces from 10,000 to as much as 25,000 seeds. The requirements for long-term storage of its seed and pollen are known. The tomato possesses a haploid set of 12 chromosomes, each of which can be identified at pachynema by relative arm lengths, distribution of the highly distinguishable heterochromatin and euchromatin, and other cytological landmarks.


Cytoplasmic Male Sterility Lycopersicon Esculentum Tomato Genome Ethylene Imine Pachytene Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andersen, W. R., 1963 Cytoplasmic sterility in hybrids of Lycopersicon esculentum and Solanum pennellii. Rep. Tomato Genet. Coop. 13: 7–8.Google Scholar
  2. Andersen, W. R., 1965 Cytoplasmic male sterility and intergrafts between Lycopersicon esculentum and Solanum pennellii Corr. J. Minn. Acad. Sci. 32: 93–94.Google Scholar
  3. Bianchi, A., G. Marchesi and G. P. Soressi, 1963 Some results in radiogenetical experiments with tomato varieties. Radiat. Bot. 3: 333–343.CrossRefGoogle Scholar
  4. Bohme, H. and G. Scholz, 1960 Versuche zur Normalisierung des Phaenotyps der Mutante Chloronerva von Lysopersicon esculentum Mill. Kulturpflanze 8: 93–109.CrossRefGoogle Scholar
  5. Boynton, J. E., 1966a Chlorophyll-deficient mutants in tomato requiring vitamin Bi. I. Genetics and physiology. Hereditas 56: 171–199.CrossRefGoogle Scholar
  6. Boynton, J. E., 1966b Chlorophyll-deficient mutants in tomato requiring vitamin B II. Abnormalities in chloroplast ultrastructure. Hereditas 56: 238–254.Google Scholar
  7. Brabec, F., 1960 Uber eine Mesochimäre aus Solanum nigrum L. und Lycopersicon pimpinellifolium Mill. Planta Berl. 55: 687–707.CrossRefGoogle Scholar
  8. Brock, R. D. and I. R. Franklin, 1966 The effect of dessication, storage and radiation intensity on mutation rate in tomato pollen. Radiat. Bot. 6: 171–179.CrossRefGoogle Scholar
  9. Brown, J. C. and W. E. Jones, 1971 Differential transport of boron in tomato (Lycopersicon esculentum Mill.). Physiol. Plant. 25: 279–282.CrossRefGoogle Scholar
  10. Brown, J. C. and W. E. Jones, 1972 Effect of germanium on the utilization of boron in tomato (Lycopersicon esculentum Mill.). Plant Physiol. 49: 651–653.PubMedCrossRefGoogle Scholar
  11. Brown, J. C., R. L. Chaney and J. E. Ambler, 1971 A new tomato mutant inefficient in the transport of iron. Physiol. Plant. 25: 48–53.CrossRefGoogle Scholar
  12. Buiatti, M. and R. Ragazzini, 1966 The mutagenic effect of acridine orange in tomato (Lycopersicon esculentum). Mutat. Res. 3: 360–361.CrossRefGoogle Scholar
  13. Caruso, J. L., 1968 Morphogenetic aspects of a leafless mutant in tomato. I. General patterns in development. Am. J. Bot. 55: 1169–1176.CrossRefGoogle Scholar
  14. Caruso, J. L. and E. G. Cutter, 1970 Morphogenetic aspects of a leafless mutant in tomato. II. Induction of a vascular cambium. Am. J. Bot. 57: 420–429.CrossRefGoogle Scholar
  15. Chmielewski, T., 1966 An exception to the unidirectional crossibility pattern in the genus Lycopersicon. Genet. Pol. 7: 31–39.Google Scholar
  16. Clayberg, C. D., L. Butler, C. M. Rick and P. A. Young, 1960 Second list of known genes in the tomato. J. Hered. 51: 167–174.Google Scholar
  17. Clayberg, C. D., L. Butler, E. A. Kerr, C. M. Rick and R. W. Robinson, 1966 Third list of known genes in the tomato. J. Hered. 57: 189–196.Google Scholar
  18. Clayberg, C. D., L. Butler, E. A. Kerr, C. M. Rick and R. W. Robinson, 1967 Supplementary list of tomato genes as of January, 1967. Rep. Tomato Genet. Coop. 17: 2–11.Google Scholar
  19. Clayberg, C. D., L. Butler. E. A. Kerr, C. M. Rick and R. W. Robinson, 1970 Additions to the list of genes, January, 1967 to January, 1970. Rep. Tomato Genet. Coop. 20: 6–11.Google Scholar
  20. Clayberg, C. D., L. Butler, E. A. Kerr, C. M. Rick and R. W. Robinson, 1973 Additions to the list of genes. Rep. Tomato Genet. Coop. 23: 3–7.Google Scholar
  21. Debergh, P. and C. Nitsch, 1973 Premiers résultats sur la culture in vitro de grains de pollen isolés chez la tomate. C. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 276: 1281–1284.Google Scholar
  22. Ecochard, R. and G. Merkx, 1972 A primary monosomic for chromosome 5 in the tomato. Caryologia 25: 531–536.Google Scholar
  23. Emery, G., 1960 Biological effects of a chemical mutagen, diepoxybutane, on tomato. Science (Wash., D.C.) 131: 1732–1733.CrossRefGoogle Scholar
  24. Gresshoff, P. M. and C. H. Doy, 1972 Development and differentiation of haploid Lycopersicon esculentum (Tomato). Planta (Berl.) 107: 161–170.CrossRefGoogle Scholar
  25. Gröber, K., 1963 Somatische Spaltung in dem heterozygotem Genotyp der dominanten Chlorophyllmutation Xanthophyllic3 von Lycopersicon esculentum Mill. I. Erste genetische und cytologische Beobachtungen in der X Generation. Kulturpflanze 11: 583–602.CrossRefGoogle Scholar
  26. Gröber, K., 1967 Somatische Spaltung in dem heterozygoten Genotyp der Chlorophyll-mutation Xanthophyllic3 von Lycopersicon esculentum Mill. II. Cytogenetische Analyse der verschiedenen Scheckungstypen in der X2- und X3-Generation. Kulturpflanze 16: 351–365.CrossRefGoogle Scholar
  27. Gröber, K., 1968 Somatische Spaltung in dem heterozygoten Genotyp der Chlorophyll-mutation Xanthopyllic von Lycopersicon esculentum Mill. III. Weitere genetische und cytologische Untersuchungen an einigen Scheckungstypen. Kulturpflanze 16: 189–201.CrossRefGoogle Scholar
  28. Gröber, K., 1969 Somatische Spaltung in dem heterozygoten Genotyp der Chlorophyll-mutation Xanthophyllic von Lycopersicon esculentum Mill. IV. Differenzierte Aktivität des Xa–3 Locus in verschiedenen Karyotypen. Kulturpflanze 17: 179–185.CrossRefGoogle Scholar
  29. Günther, E., 1961 Durch Chimärenbildung verursachte Aufhebung der Selbstinkompatibilität von Lycopersicon peruvianum (L.) Mill. Ber. Dtsch. Bot. Ges. 74: 333–336.Google Scholar
  30. Günther, E., 1964 Reziproke Bastarde zwischen Lycopersicon esculentum Mill, und Lycopersicon peruvianum (L.) Mill. Naturwissenschaften 51: 443–444.CrossRefGoogle Scholar
  31. Haccius, B. and M. Garrecht, 1963 Durch Phenylborsäure induzierte “Lanzett- blättrikeit” bei Solanum lycopersicum. Naturwissenschaften 50: 133–134.CrossRefGoogle Scholar
  32. Hagemann, R., 1958 Somatische Konversion bei Lycopersicon esculentum Mill. Z. Vererbungsl. 89: 587–613.PubMedGoogle Scholar
  33. Hagemann, R., 1961a Mitteilungen über somatische Konversion. 1. Ausschluss des Vorliegens von somatische Austausch. Biol. Zentralbl. 80: 477–478.Google Scholar
  34. Hagemann, R., 1961b Mitteilungen über somatische Konversion. 2. In welchem Ausmass ist die somatische Konversion gerichtet? Biol. Zentralbl. 80: 549–550.Google Scholar
  35. Hagemann, R., 1961c Mitteilungen über somatische Konversion. 3. Die Konversionshäufigkeit in Bastarden zwischen sulfurea Homozygoten und verschiedenen Sippen des Subgenus Eulycopersicon. Biol. Zentralbl. 80: 717–719.Google Scholar
  36. Hagemann, R., 1966 Somatische Konversion am sulfurea Locus von Lycopersicon esculentum Mill. II. Weitere Beweise für die somatische Konversion. Kulturpflanze 14: 171–200.CrossRefGoogle Scholar
  37. Hagemann, R., 1967 Uber eine immerspaltende-Mutantenlinie von Lycopersicon esculentum Mill. I. Genetische Untersuchungen. Biol. Zentralbl. 86: (Suppl.) 181–209.Google Scholar
  38. Hagemann, R., 1969a Somatic conversion (paramutation) at the sulfurea locus of Lycopersicon esculentum Mill. III. Studies with trisomies. Can. J. Genet. Cytol. 11: 346–358.Google Scholar
  39. Hagemann, R., 1969b Somatische Konversion (Paramutation) am sulfurea Locus von Lycopersicon esculentum Mill. IV. Die genotypische Bestimmung der Konversionshäufigkeit. Theor. Appl. Genet. 39: 295–305.CrossRefGoogle Scholar
  40. Hardon, J. J., 1967 Unilateral incompatibility between Solanum pennellii and Lycopersicon esculentum. Genetics 57:795–808.Google Scholar
  41. Herrmann, F. and R. Hagemann, 1967 Uber eine immerspaltende y-Mutantenlinie von Lycopersicon esculentum Mill. 2. Cytogenetische Untersuchungen an gescheckten Pflanzen. Biol. Zentralbl. 86: (Suppl.) 163–180.Google Scholar
  42. Hildering, G. J., 1963 The mutagenic effect of ethylene imine (EI) on the tomato. Euphytica 12: 113–119.Google Scholar
  43. Hildering, G. J. and J. H. van der Veen, 1966 Mutual independence of Mr fertility and mutant yield in EMS-treated tomatoes. Euphytica 16: 412–424.CrossRefGoogle Scholar
  44. Hildering, G. J. and K. Verkerk, 1965 Chimeric structure of the tomato plant after seed treatment with EMS and X-rays. In The Use of Induced Mutations in Plant Breeding, pp. 317–320, Food and Agricultural Organization of The United Nations, Rome.Google Scholar
  45. Hogenboom, N. G., 1972a Breaking breeding barriers in Lyeopersicon. 4. Breakdown of unilateral incompatibility between L. peruvianum (L.) Mill, and L. esculentum Mill. Euphytica 21: 397–404.CrossRefGoogle Scholar
  46. Hogenboom, N. G., 1972b Breaking breeding barriers in Lycopersicon. 5. The inheritance of the unilateral incompatibility between L. peruvianum (L.) Mill, and L. esculentum Mill, and the Genetics of its breakdown. Euphytica 21: 405–414.CrossRefGoogle Scholar
  47. Jain, H. K., R. N. Raut and Y. G. Khamankar, 1968 Base specific chemicals and mutation analysis in Lycopersicon [esculentum]. Heredity 23: 247–256.PubMedCrossRefGoogle Scholar
  48. Khush, G. S. and G. M. Rick, 1966 The origin, identification, and cytogenetic behavior of tomato monosomies. Chromosoma 18: 407–420.CrossRefGoogle Scholar
  49. Khush, G. S. and C. M. Rick, 1967a Tomato tertiary trisomies: origin, identification, morphology and use in determining position of centromeres and arm location of markers. Can. J. Genet. Cytol. 9: 610–631.Google Scholar
  50. Khush, G. S. and C. M. Rick, 1967b Novel compensating trisomies of the tomato: Cytogenetics, monosomic analysis, and other applications. Genetics 56: 297–307.PubMedGoogle Scholar
  51. Khush, G. S. and C. M. Rick, 1967c Haplo-triplo-disomics of the tomato: origin, Cytogenetics, and utilization as a source of secondary trisomies. Biol. Zentralbl. 86: (Suppl.) 257–265.Google Scholar
  52. Khush, G. S. and C. M. Rick, 1961d Studies on the linkage map of chromosome 4 of the tomato and on the transmission of induced deficiencies. Genetica (The Hague) 38: 74–94.Google Scholar
  53. Khush, G. S. and C. M. Rick, 1968a Tomato telotrisomics: origin, identification, and use in linkage mapping. Cytologia (Tokyo) 33: 137–148.CrossRefGoogle Scholar
  54. Khush, G. S. and C. M. Rick, 1968b Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23: 452–484.CrossRefGoogle Scholar
  55. Khush, G. S. and C. M. Rick, 1969 Tomato secondary trisomies: origin, identification, morphology, and use in cytogenetic analysis of the genome. Heredity 24: 129–146.CrossRefGoogle Scholar
  56. Khush, G. S., C. M. Rick and R. W. Robinson, 1964 Genetic activity in a heterochromatic chromosome segment of the tomato. Science (Wash., D.C.) 145: 1432–1434.CrossRefGoogle Scholar
  57. Kruse, J., 1968 Merkmalsanalyse und Gruppenbildung bei Mutanten von Lycopersicon esculentum Mill. Kulturpflanze 5: (Suppl.) 1–227.Google Scholar
  58. Langridge, J. and R. D. Brock, 1961 A thiamine-requiring mutant of the tomato. Aust. J.Biol.Sci. 14: 66–69.Google Scholar
  59. Machold, O., 1966 Untersuchungen an stoffwechseldefekten Mutanten der Kulturtomate. III. Die Wirkung von Ammonium- und Nitratstickstoff auf den Chlorophyllgehalt. Flora (Jena) 157A: 536–551.Google Scholar
  60. Majid, R., 1966 Efficacy of seedling grafting for overcoming interspecific incompatibility in Lycopersicon. Curr. Sci. (Bangalore) 35: 420.Google Scholar
  61. Mathan, D. S., 1965a Morphogenetic effect of phenylboric acid on various leaf-shape mutants in the tomato, duplicating the effect of the lanceolate gene. Z. Vererbungsl. 97: 157–165.Google Scholar
  62. Mathan, D. S., 1965b Phenylboric acid, a chemical agent simulating the effect of the lanceolate gene in the tomato. Am. J. Bot. 52: 185–192.CrossRefGoogle Scholar
  63. Mathan, D. S., 1967 .Reversing the morphogenetic effect of phenylboric acid and of the lanceolate gene with actinomycin D in the tomato. Genetics 57:15–23.Google Scholar
  64. Mathan, D. S. and R. D. Cole, 1964 Comparative biochemical study of two allelic forms of a gene affecting leaf-shape in the tomato. Am. J. Bot. 51: 560–566.CrossRefGoogle Scholar
  65. Mathan, D. S. and J. A. Jenkins, 1960 Chemically induced phenocopy of a tomato mutant. Science (Wash., D.C.) 131: 36–37.CrossRefGoogle Scholar
  66. Mathan, D. S. and J. A. Jenkins, 1962 A morphogenetic study of lanceolate, a leaf-shape mutant in the tomato. Am. J. Bot. 49: 504–514.CrossRefGoogle Scholar
  67. Mathan, D. S. and R. F. Stettler, 1962 Age of seed effect in homozygous lanceolate seedlings. Rep. Tomato Genet. Coop. 12: 32–33.Google Scholar
  68. Menzel, M. Y. and J. M. Price, 1966 Fine structure of synapsed chromosomes in Fx Lycopersicon esculentum-Solanum lycopersicoides and its parents. Am. J. Bot. 53: 1079–1086.CrossRefGoogle Scholar
  69. Moens, P. and L. Butler, 1963 The genetic location of the centromere of chromosome # 2 in the tomato (Lycopersicon esculentum). Can. J. Genet. Cytol. 5: 364–370.Google Scholar
  70. Ramanna, M. S., 1969 The origin of tertiary monosomies in the tomato. Genetica (The Hague) 40: 279–288.Google Scholar
  71. Rick, G. M., 1950 Pollination relations of Lycopersicon esculentum in native and foreign regions. Evolution 4: 110–122.CrossRefGoogle Scholar
  72. Rick, C. M., 1958 The role of natural hybridization in the derivation of cultivated tomatoes of western South America. Econ. Bot. 12: 346–367.CrossRefGoogle Scholar
  73. Rick, C. M., 1959 Non-random gene distribution among tomato chromosomes. Proc. Natl. Acad. Set. USA 45: 1515–1519.CrossRefGoogle Scholar
  74. Rick, G. M., 1960 Hybridization between Lycopersicon esculentum and Solanum pen- nellii: Phylogenetic and cytogenetic significance. Proc. Natl. Acad. Sci. USA 46: 78–82.PubMedCrossRefGoogle Scholar
  75. Rick, C. M., 1969 Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62: 753–768.PubMedGoogle Scholar
  76. Rick, C. M., 1971a Some cytogenetic features of the genome in diploid plant species. Stadler Genet. Symp. 2: 153–174.Google Scholar
  77. Rick, C. M., 1971b Further studies on segregation and recombination in backcross derivatives of a tomato species hybrid. Biol. Zentralbl. 91: 209–220.Google Scholar
  78. Rick, C. M., 1973 Potential genetic resources in tomato species: clues from observations in native habitats, In Srb, A. M. Genes, Enzymes, and Populations, pp. 255–269, Plenum, New York.CrossRefGoogle Scholar
  79. Rick, C. M. and D. W. Barton, 1954 Cytological and genetical identification of the primary trisomies of the tomato. Genetics 39: 640–666.PubMedGoogle Scholar
  80. Rick, C. M. and J. E. Boynton, 1967 A temperature-sensitive male-sterile mutant of the tomato. Am. J. Bot. 54: 601–611.CrossRefGoogle Scholar
  81. Rick, C. M. and L. Butler, 1956 Cytogenetics of the tomato. Adv. Genet. 8: 267–382.CrossRefGoogle Scholar
  82. Rick, C. M. and G. S. Khush, 1961 X-ray induced deficiencies of chromosome 11 in the tomato. Genetics 46: 1389–1393.PubMedGoogle Scholar
  83. Rick, C. M. and G. S. Khush, 1969 Cytogenetic explorations in the tomato genome. Genet. Led. 1: 45–68.Google Scholar
  84. Rick, C. M. and R. W. Zobel, 1972 New linkage testers. Rep. Tomato Genet. Coop. 22: 24.Google Scholar
  85. Rick, C. M., W. H. Dempsey and G. S. Khush, 1964 Further studies on the primary trisomies of the tomato. Can. J. Genet. Cytol. 6: 93–108.Google Scholar
  86. Scholz, G., 1964 Versuche zur Normalisierung des Phänotyps der Mutante chloronerva von Lycopersicon esculentum Mill. 3. Uber Isolierung und chemische Charakterisierung des “normalisierenden Faktors.” Flora (Jena) 154: 589–597.Google Scholar
  87. Sharp, W. R., D. K. Dougall and E. F. Paddock, 1971 Haploid plantlets and callus from immature pollen grains of Nicotiana and Lycopersicon. Bull. Torrey Bot. Club 98: 219–222.CrossRefGoogle Scholar
  88. Sharp, W. R., R. S. Raskin and H. E. Sommer, 1972 Use of nurse culture in the development of haploid clones in tomato. Planta (Berl.) 104: 357–361.CrossRefGoogle Scholar
  89. Snoad, B., 1962 Pachytene chromosomes and the linkage maps. Rep. Tomato Genet. Coop. 12: 44–45.Google Scholar
  90. Stettier, R. F., 1964 Dosage effects of the lanceolate gene in tomato. Am. J. Bot. 51: 253–264.CrossRefGoogle Scholar
  91. Stevens, M. A., 1970 Inheritance and flavor contribution of 2-isobutylthiazole, methyl salicylate, and eugenol in tomatoes. J. Am. Soc. Hort. Sci. 95: 9–13.Google Scholar
  92. Stevens, M. A., 1972a Relationships between components contributing to quality variation among tomato lines. J. Am. Soc. Hort. Sci. 97: 70–73.Google Scholar
  93. Stevens, M. A., 1972b Citrate and malate concentrations in tomato fruits: genetic control and maturational effects. J. Am. Soc. Hort. Sci. 97: 655–658.Google Scholar
  94. Stubbe, H., 1954 Uber die vegetative Hybridisierung von Pflanzen. Kulturpflanze 2: 185–236.CrossRefGoogle Scholar
  95. Stubbe, H., 1957 Mutanten der Kulturtomate Lycopersicon esculentum Miller. I. Kulturpflanze 5: 190–220.CrossRefGoogle Scholar
  96. Stubbe, H., 1958a Mutanten der Kulturtomate Lycopersicon esculentum Miller. II. Kulturpflanze 6: 89–115.CrossRefGoogle Scholar
  97. Stubbe, H., 1958b Advances and problems of research in mutations in the applied field. Proc. X Int. Congr. Genet. 1: 247–260.Google Scholar
  98. Stubbe, H., 1959 Mutanten der Kulturtomate Lycopersicon esculentum Miller. III. Kulturpflanze 7: 82–112.CrossRefGoogle Scholar
  99. Stubbe, H., 1960 Mutanten der Wildtomate Lycopersicon pimpinellifolium (Jusl.) Mill. I. Kulturpflanze 8: 110–137.CrossRefGoogle Scholar
  100. Stubbe, H., 1961 Mutanten der Wildtomate Lycopersicon pimpinellifolium (Jusl.) Mill. II. Kulturpflanze 9: 58–87.CrossRefGoogle Scholar
  101. Stubbe, H., 1963 Mutanten der Kulturtomate Lycopersicon esculentum Miller. IV. Kulturpflanze 11: 603–644.CrossRefGoogle Scholar
  102. Stubbe, H., 1964 Mutanten der Kulturtomate Lycopersicon esculentum Miller. V. Kulturpflanze 12: 121–152.CrossRefGoogle Scholar
  103. Stubbe, H., 1965 Mutanten der Wildtomate Lycopersicon pimpinellifolium (Jusl.) Mill. III. Kulturpflanze 13: 517–544.CrossRefGoogle Scholar
  104. Stubbe, H., 1970 Parallelmutationen in der Gattung Lycopersicon. Kulturpflanze 18: 209–220.CrossRefGoogle Scholar
  105. Stubbe, H., 1971 Weitere evolutionsgenetische Untersuchengen in der Gattung Lycopersicon. Biol. Zentralbl. 90: 545–559.Google Scholar
  106. Stubbe, H., 1972a Mutanten der Kulturtomate Lycopersicon esculentum Miller. VI. Kulturpflanze 19: 185–230.CrossRefGoogle Scholar
  107. Stubbe, H., 1972b Mutanten der Wildtomate Lycopersicon pimpinellifolium (Jusl.) Mill.. IV. Kulturpflanze 19: 231–263.CrossRefGoogle Scholar
  108. Tal, M., 1966 Abnormal stomatal behavior in wilty mutants of tomato. Plant Physiol. 41: 1387–1391.PubMedCrossRefGoogle Scholar
  109. Tal, M., 1967 Genetic differentiation and stability of some characters that distinguish Lycopersicon esculentum Mill, from Solanum pennellii Cor. Evolution 21: 316–333.CrossRefGoogle Scholar
  110. Tal, M. and D. Imber, 1970 Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. II. Auxin- and abscisic acid-like activity. Plant Physiol. 46: 373–376.PubMedCrossRefGoogle Scholar
  111. Tal, M. and Y. Nevo, 1973 Abnormal stomatal behavior and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochem. Genet. 8: 291–300.PubMedCrossRefGoogle Scholar
  112. Tal, M., D. Imber and C. Itai, 1970 Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. I. Root effect and kinetin-like activity. Plant Physiol. 46: 367–372.PubMedCrossRefGoogle Scholar
  113. Tomes, M. L., 1969 Delta-carotene in the tomato. Genetics 62: 769–780.PubMedGoogle Scholar
  114. Verkerk, K., 1959 Neutronic mutations in tomatoes. Euphytica 8: 216–222.CrossRefGoogle Scholar
  115. Wall, R. J. and C. F. Andrus, 1962 The inheritance and physiology of boron response in the tomato. Am. J. Bot. 49: 758–762.CrossRefGoogle Scholar
  116. Wettstein-Knowles, P. von, 1968 Mutations affecting anthocyanin synthesis in the tomato. I. Genetics, histology, and biochemistry. Hereditas 60: 317–346.CrossRefGoogle Scholar
  117. Yu, S. and A. F. Yeager, 1960 Ten heritable mutations found in the tomato following irradiation with X-rays and thermal neutrons. Proc. Am. Soc. Hortic. Sci. 76: 538–542.Google Scholar
  118. Zobel, R. W., 1972a Genetics and physiology of two root mutants in tomato, Lycopersicon esculentum Mill. Ph.D. Thesis, Department of Vegetable Crops, University of California, Davis, Calif.Google Scholar
  119. Zobel, R. W., 1972b Genetics of the diageotropica mutant in the tomato. J. Hered. 63: 94–97.Google Scholar
  120. Zobel, R. W., 1973 Some physiological characteristics of the ethylene-requiring tomato mutant diageotropica. Plant Physiol. 52: 385–389.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Charles M. Rick
    • 1
  1. 1.Department of Vegetable CropsUniversity of CaliforniaDavisUSA

Personalised recommendations