Auger Spectroscopy of Fracture Surfaces of Ceramics

  • H. L. Marcus
  • J. M. Harris
  • F. J. Szalkowski
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 1)


Fracture paths in ceramics very often follow distinct interface regions. In fully dense ceramics formed by hot pressing techniques, intergranular fracture is very common. This paper will report on Auger Electron Spectroscopy (AES) studies of fracture surfaces in a series of ceramic materials including Al2 O3, MgO, and Si3N4 which were formed using different processing techniques. AES on the fractured surface of a lunar sample will also be discussed. SEM fractography will be used to relate the surface chemistry to the failure mode. Combined argon ion sputtering and AES studies demonstrate the local variations in chemistry near the fracture surface.


Fracture Surface Auger Electron Spectroscopy2 Scanning Electron Micro Auger Spectroscopy Incident Beam Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Griffith, Phil. Trans. Roy. Soc. London, Ser. A221, 163 (1920).Google Scholar
  2. 2.
    L. A. Harris, J. Appl. Phys. 39, 1419 (1968).CrossRefGoogle Scholar
  3. 3.
    L. A. Harris, J. Appl. Phys. 31 1428 (1968).CrossRefGoogle Scholar
  4. 4.
    H. L. Marcus, P. W. Palmberg, Trans. AIME 245, 1664 (1969).Google Scholar
  5. 5.
    C. Chang, Surf. Sci. 25, 53 (1971).CrossRefGoogle Scholar
  6. 6.
    G. A. Somorjai, F. J. Szalkowski, Advances in High Temperature Chemistry, Ed. L. Eyring (Academic Press, New York, 1971)9 Vol. U, p. 137.Google Scholar
  7. 7.
    P. W. Palmberg, H. L. Marcus, ASM Trans. Quart. 62, 1016 (1969).Google Scholar
  8. 8.
    A. J. Dekker, Solid State Physics, Ed. F. Seitz and D. Turnbull (Academic Press, New York, 1958), Vol. 6, p. 251.Google Scholar
  9. 9.
    H. Bruining, Physics and Applications of Secondary Electron Emission ( Pergamon Press, London, 1954 ).Google Scholar
  10. 10.
    B. Lang, S. Goldsztaub, Surf. Sci. 32, 473 (1972).CrossRefGoogle Scholar
  11. 11.
    L. J. Graham, G. A. Alers, this conference.Google Scholar
  12. 12.
    R. L. Coble, J. E. Burke, Progress in Ceramic Science, Ed. J. E. Burke (Macmillan Co., New York, 1963), Vol. 3, p. 197.Google Scholar
  13. 13.
    H. L. Marcus, M. E. Fine, J. Amer. Ceram. Soc. 55, 568 (1972).Google Scholar
  14. 14.
    R. C. Sundahl, L. Berrin, Proc. Symp. Sci. Comm. Machining Surf. Finishing, Nat. Bur. Stand., Gaithersburg, MD (1971).Google Scholar
  15. 15.
    R. D. Sundahl, J. Vac. Sci. and Tech. 9, 18l (1971).Google Scholar
  16. 16.
    R. C. Sundahl, L. Berrin, private communication.Google Scholar
  17. 17.
    M. Gryzinski, Phys. Rev. 138, A336 (1965).CrossRefGoogle Scholar
  18. 18.
    F. J. Szalkowski, G. A. Somorjai, J. Chem. Phys. 56, 6097 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • H. L. Marcus
    • 1
  • J. M. Harris
    • 1
  • F. J. Szalkowski
    • 1
  1. 1.Science CenterRockwell InternationalThousand OaksUSA

Personalised recommendations