Advertisement

Fracture Mechanics Determinations

  • A. G. Evans
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 1)

Abstract

Techniques for the evaluation of fracture mechanics parameters are described. The selection of techniques for various ceramic applications is discussed, emphasizing the particular problems encountered with these measurements in ceramic systems. Finally, the application of fracture mechanics parameters to problems in both materials development and failure prediction in ceramic systems is described.

Keywords

Stress Intensity Factor Crack Growth Rate Material Development Slow Crack Growth Crack Arrest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. C. Paris, G. C. Sih, ASTM Special Tech. Publ. No. 381 (1965).Google Scholar
  2. 2.
    W. F. Brown, J. E. Srawley, ASTM Special Tech. Publ. No. 410 (1966).Google Scholar
  3. 3.
    A. G. Evans, G. Tappin, Proc. Brit. Ceram. Soc. 20, 275 (1972).Google Scholar
  4. 4.
    See for example A. S. Tetelman and A. J. McEvily, Fracture of Structural Materials ( Wiley, New York ) 1967.Google Scholar
  5. 5.
    S. M. Wiederhorn, this volume.Google Scholar
  6. 6.
    R. M. Thomson, Annual Reviews, to be published.Google Scholar
  7. 7.
    A. A. Griffith, Phil. Trans. Roy. Soc. A221, 163 (1920).Google Scholar
  8. 8.
    D. P. H. Hasselman, J. A. Coppola, D. A. Krohn, Materials Research Bulletin, 1 769 (1972).Google Scholar
  9. 9.
    R. N. Stevens, R. Dutton, Mater. Sci. Eng. 220 (1972).Google Scholar
  10. 10.
    R. W. Davidge, A. G. Evans, Mater. Sci. Eng. 6, 281 (1970).CrossRefGoogle Scholar
  11. 11.
    J. J. Gilman, J. Appl. Phys. 31, 2208 (1960).CrossRefGoogle Scholar
  12. 12.
    A. G. Evans, Phil. Mag. 22, 84 (1970).Google Scholar
  13. 13.
    S. M. Wiederhorn, J. Am. Ceram. Soc. 52, 485 (1969).CrossRefGoogle Scholar
  14. 14.
    S. M. Wiederhorn, J. Am. Ceram. Soc. 52, 99 (1969).CrossRefGoogle Scholar
  15. 15.
    L. A. Simpson, this volume.Google Scholar
  16. 16.
    S. M. Wiederhorn, A. G. Evans, D. E. Roberts, J. Appl. Phys. 39, 1572 (1968).CrossRefGoogle Scholar
  17. 17.
    S. M. Wiederhorn, A. G. Evans and D. E. Roberts, this volume.Google Scholar
  18. 18.
    H. Meredith, P. L. Pratt, Third International Fracture Conference, Munich (April 1973), paper IX-322.Google Scholar
  19. 19.
    S. Mostovoy, P. B. Crosley, E. J. Ripling, J. Materials 2, 661 (1967).Google Scholar
  20. 20.
    A. G. Evans, J. Mater. Sci. 7, 1137 (1972).CrossRefGoogle Scholar
  21. 21.
    D. P. Williams, A. G. Evans, J. of Testing and Evaluation August 1973, to be published.Google Scholar
  22. 22.
    S. W. Frieman, D. R. Mulville, P. W. Mark, Report of NRL Progress, Feb. 1972, p. 36.Google Scholar
  23. 23.
    R. G. Hoagland, A. R. Rosenfield, G. T. Hahn, Met Trans 3, 123 (1972).CrossRefGoogle Scholar
  24. 24.
    R. Bertolotti, J. Am. Ceram. Soc. 56, 107 (1973).CrossRefGoogle Scholar
  25. 25.
    See for example, A. G. Evans, J. Am. Ceram. Soc., July 1973, to be published.Google Scholar
  26. 26.
    S. M. Wiederhorn, J. Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
  27. 27.
    D. P. H. Hasselman, J. Am. Ceram. Soc. 52, 600 (1969).CrossRefGoogle Scholar
  28. 28.
    F. F. Lange, private communication.Google Scholar
  29. 29.
    R. W. Davidge, G. Tappin, J. Mater. Sci. 165 (1968).Google Scholar
  30. 30.
    J. Nakayama, J. Am. Ceram. Soc. 48, 583 (1965).CrossRefGoogle Scholar
  31. 31.
    H. G. Tattersall, G. Tappin, J. Mater. Sci. 296 (1966).Google Scholar
  32. 32.
    Recent strength improvements in materials for the ceramic gas turbine (Si3N4 and SiC) have been achieved by this type of quality control, notably at Norton Co. and G. E.Google Scholar
  33. 33.
    Work performed at Westinghouse Research Labs by R. Kossowsky and F. F. Lange.Google Scholar
  34. 34.
    R. W. Rice, Bull. Am. Ceram. Soc., April 1973, p. 354.Google Scholar
  35. 35.
    D. P. H. Hasselman, R. M. Fulrath, J. Am. Ceram. Soc. 49, 68 (1966).CrossRefGoogle Scholar
  36. 36.
    R. W. Davidge, T. J. Green, J. Mater. Sci. 629 (1968).Google Scholar
  37. 37.
    J. B. Wachtman, Jr., Mechanical Behavior of Materials, 432 (1972).Google Scholar
  38. 38.
    S. M. Wiederhorn, J. Am. Ceram. Soc. 56, 227 (1973).CrossRefGoogle Scholar
  39. 39.
    A. G. Evans, S. M. Wiederhorn, Intl. J. Frac. Mech., to be published.Google Scholar
  40. 40.
    A. G. Evans, S. M. Wiederhorn, J. Mater. Sci., to be published.Google Scholar
  41. 41.
    A. G. Evans, M. Linzer, J. Am. Ceram. Soc., October 1973, to be published.Google Scholar
  42. 42.
    D. O. Harris, A. S. Tetelman, Eng. Frac. Mech., 4, 93 (1972).CrossRefGoogle Scholar
  43. 43.
    G. A. Alers, L. J. Graham, North American Rockwell Report SC 531.7FR (1973).Google Scholar
  44. 44.
    N. F. Mott, Engineering, 165, 16 (1948).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • A. G. Evans
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations