Inclusion Effects on the Strength of Hot Pressed Si3N4

  • H. R. Baumgartner
  • D. W. Richerson
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 1)


Due to its high strength, low thermal expansion and resistance to corrosion and oxidation at high temperatures, hot-pressed silicon nitride is a major candidate for such applications as gas turbine engine components, bearings and a variety of high temperature structural components. Yet, as it exists today, hot-pressed silicon nitride is still in an evolutionary stage of development. Considerable potential exists for improvements in properties, production capabilities and engineering reliability. The purpose of this paper is to describe efforts to improve the strength and reliability of silicon nitride via the reduction in the size and frequency of inclusions.


Stress Intensity Factor Silicon Nitride Stress Concentration Factor Residual Thermal Stress Fracture Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Griffith, Phil. Trans. Roy. Soc. London 221A, 163 (1920).Google Scholar
  2. 2.
    W. Crandall, J. Ging, J. Amer. Ceram. Soc. 38, 44 (1955).CrossRefGoogle Scholar
  3. 3.
    H. Rhodes, P. L. Berneburg, R. M. Cannon, W. C. Steele, Summary Report, U. S. Naval Air Systems Contract N00019-72-C-0298, 51 (1973).Google Scholar
  4. 4.
    J. Gurland, J. Plateau, Trans. ASM 59 442 (1963).Google Scholar
  5. 5.
    R. H. Edwards, J. Appl. Mechanics 18, 19 (1951).Google Scholar
  6. 6.
    J. N. Goodier, Trans. AS ME 55, 39 (1933).Google Scholar
  7. 7.
    F. F. Lange, Tech. Rept. No. 8, Contract No. NOOOlU- 68-C-0323, Office of Naval Research (l97l).Google Scholar
  8. 8.
    D. B. Binns, Science оf Ceramics, ed. by G. H. Stewart, Academic Press, New York, 315–3314 (1962).Google Scholar
  9. 9.
    E. F. Poncelet, Trans. Soc. Glass Tech. XLII, 279–288 (1958).Google Scholar
  10. 10.
    J. B. Murgatroyd, Trans. Soc. Glass Tech. XXVI, 155 (1942).Google Scholar
  11. 11.
    A. Smekal, Trans. Soc. Glass Tech. 20, 432 (1936).Google Scholar
  12. 12.
    A. F. Liu, Eng. Fracture Mech. 4 175–179 (1972).CrossRefGoogle Scholar
  13. 13.
    J. A. Coppola, R. C. Bradt, D. W. Richerson, R. A. Alliegro, Ceramic Bulletin 51, no. 11, 8147–851 (1972).Google Scholar
  14. 14.
    R. Kossowsky, F. Lange of Westinghouse Research Laboratory, Personal Communication.Google Scholar
  15. 15.
    D. Pears, H. S. Starrett, R. E. Bickelhaupt, D. W. Braswell, AFML-TR-69-2hk Tech. Rept., Part 1, 11 (1970).Google Scholar
  16. 16.
    L. D. Gregory, С. E. Spruill, ISA Conference, Washington D. C., 33 (1964).Google Scholar
  17. 17.
    E. B. Shand, J. Amer. Ceram. Soc. 48, 43 (1965).CrossRefGoogle Scholar
  18. 18.
    J. Kerper, T. G. Scuderi, Ceramic Bulletin 43 N0. 9, 622 (1964)Google Scholar
  19. 19.
    I. N. Sneddon, Proc. Royal Soc., London 187A, (1946).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • H. R. Baumgartner
    • 1
  • D. W. Richerson
    • 1
  1. 1.Norton CompanyWorcesterUSA

Personalised recommendations