Skip to main content

Fracture Mechanics, Statistical Analysis and Fractography of Carbides and Metal Carbides Composites

  • Chapter

Part of the book series: Fracture Mechanics of Ceramics ((FMOC,volume 1))

Abstract

Fractography by scanning and transmission electron microscopy was used to study the fracture in transition metal carbides (TiC and WC) and composites: TiC-Co, TiC-Ni, TiC-NiCr and WC-Co. The fracture of the carbide crystals is always brittle with river patterns and Wallner lines. When the carbide crystals of the composites are small, the fracture is intergranular and dimples are observed in the matrix. The principal factor of the micrographie feature is the diameter of the carbide crystals.

The morphology of the fracture path was investigated statistically using punctual analysis and a modification of the Johnson- Saltykov method. The results obtained on polished and fractured surfaces were compared by quantitative metallography. This investigation confirms that the WC-Co fracture by three-point bending is essentially intergranular and that this intergranular fracture path is random.

Three-point bending tests were used in the investigation of the effective surface energy of crack initiation, ϒi, and of the stress intensity factor, KI, for WC-Co composites. It was first determined that the usual methods for such brittle materials are in agreement for WC-Co, and permit the determination of the value of the critical stress intensity factor. Further, the variations of Yi and KIC were studied as a function of the mean particle size diameter of carbide crystals and of the different cobalt volumic ratio. The variations evolve regularly and can be explained by a statistical analysis of the fractured paths in SEM and ТЕМ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. S. Kreimer, N.A. Alekseyeva, Fiz. Metal. Metalloved. 13, 609 (1962).

    CAS  Google Scholar 

  2. F. R. N. Nabarro, S. Bartolucci Luyckx, Trans. Jap. Inst. Met. 9 suppl., 610 (1968).

    Google Scholar 

  3. R. T. De Hoff, F.N. Rhines, in Quantitative Microscopy, Mc Graw-Hill Book Co, 1968.

    Google Scholar 

  4. A. S. Tetelman, A. J. Mc Evily, in Fracture of Structural Materials, John Wiley and Sons, 1967.

    Google Scholar 

  5. D. François, L. Joly, in La Rupture des Métaux, Masson et Cie, 1972.

    Google Scholar 

  6. R.W. Davidge, G. Tappin, J. Mater. Sci. 3, 165 (1968).

    Article  CAS  Google Scholar 

  7. G. Manier, Thèse de 3ème Cycle, Caen juillet 1971.

    Google Scholar 

  8. G. Hautier, Thèse de Docteur Ingénieur, Caen septembre 1972.

    Google Scholar 

  9. Atlas des Micrographies Electroniques des Ruptures Fragiles ou Prématurées, 1964, 1966 et 1970. Service Technique des Armes et Constructions Navales, Laboratoire de Physique des Métaux, Paris.

    Google Scholar 

  10. R. L. Scott, A. Turkalo, Proc. Am. Soc. Test. Mat. 57, 536 (1957).

    CAS  Google Scholar 

  11. M. Drouzy, Prakt. Metal. 481 (1967).

    Google Scholar 

  12. W.A. Johnson, Met. Progr. 49, 87 (1946).

    Google Scholar 

  13. S.A. Saltykov, in “Stereometric Metallography”, 2nd Ed., Metal-lurgizdat, Moscow, 1958, p. 446, quoted by (3) p. 149.

    Google Scholar 

  14. A. Hara, T. Nishikawa, S. Yazu, Planseeb. Pulvermet. 18, 28 (1970).

    CAS  Google Scholar 

  15. S. Tolansky, in Multiple beam Interferometry of Surfaces and Films, Clarendon Press, 1948 p. 45.

    Google Scholar 

  16. J. R. Low, Trans AIME, J. Metals 206, 982 (1956).

    Google Scholar 

  17. E. Mencarelli, H. De Leiris, J.C. Nomine, Mém. Scient. Rev. Met. 68, 407 (1966).

    Google Scholar 

  18. J. L. Chermant, P. Delavignette, A. Deschanvres, J. Less Common Metals 21, 89 (1970).

    Article  CAS  Google Scholar 

  19. J. Vicens, J.L. Chermant, Phys. Stat. Sol. 7, 217 (1971).

    Article  CAS  Google Scholar 

  20. J.L. Chermant, A. Deschanvres, E. Mencarelli, Metallography 4, 415 (1971).

    Article  CAS  Google Scholar 

  21. J.L. Chermant, M. Coster, A. Deschanvres, to be published.

    Google Scholar 

  22. M. Coster, J.L. Chermant, A. Deschanvres, C.R. Acad. Sci. 271С, 446 (1970).

    Google Scholar 

  23. J. Gurland, Trans. AIME 227, 1146 (1963).

    CAS  Google Scholar 

  24. A. Gangulee, J. Gurland, Trans. AIME 239, 269 (1967).

    Google Scholar 

  25. H. Corten, in Modem Composite Materials, Ed. L.J. Broutman and R.H. Krock, Addison-Wesley Publ. Co., 1967, ch. II, p. 27.

    Google Scholar 

  26. J.L. Chermant, M. Coster, A. lost, 11th Annual Meeting of the European High Pressure Research Group held in London on 16th to 18th April 1973.

    Google Scholar 

  27. J. Gurland, Trans. AIME 212, 452 (1958).

    CAS  Google Scholar 

  28. M. Coster, private communication.

    Google Scholar 

  29. J.E. Brown, W.F. Srawley, ASTM-STP 410 (1966).

    Google Scholar 

  30. H.G. Tattersall, G. Tappin, J. Mat. Sci. 1, 296 (1966).

    Article  Google Scholar 

  31. C. Turner, Mat. Sci. Eng. 11, 275 (1973).

    Article  Google Scholar 

  32. G. Feddern, E. Macherauch, Z. Metallk. 62, 805 (1971).

    CAS  Google Scholar 

  33. J.A. Coppola, R.C. Bradt, J. Amer. Ceram. Soc. 55, 455 (1972)

    Article  CAS  Google Scholar 

  34. J.F. Lynch, R.C. Bradt, J. Amer. Ceram. Soc. 56, 228 (1973).

    Article  CAS  Google Scholar 

  35. P.L. Gut shall, G.E. Gross, Eng. Fract. Mech. 463 (1969).

    Google Scholar 

  36. F.F. Lange, J. Amer. Ceram. Soc. 54, 614 (1971).

    Article  CAS  Google Scholar 

  37. A.S.T.M. Stand. 31, 1018 (1968).

    Google Scholar 

  38. A.S.T.M. Stand. E339, 955 (1972).

    Google Scholar 

  39. R.W. Davidge, G. Tappin, Proc. Brit. Ceram. Soc. 15, 47 (1970).

    Google Scholar 

  40. P. Kenny, Powd. Met. 27, 22 (1971).

    Google Scholar 

  41. F.A. Johnson, J.C. Radon, Eng. Mat. Design 10, 883 (1971).

    Google Scholar 

  42. R.L. Bertolotti, J. Amer. Ceram. Soc. 56 107 (1973).

    Article  CAS  Google Scholar 

  43. P.W.R. Beaumont, A.S. Tetelman, Report UCLA-ENG-7269, Aug. 1972, School of Engineering and Applied Science, University of California, Los Angeles.

    Google Scholar 

  44. A.G. Spektor, Zavod. Lab. 16, 173 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Chermant, J.L., Deschanvres, A., Iost, A. (1974). Fracture Mechanics, Statistical Analysis and Fractography of Carbides and Metal Carbides Composites. In: Bradt, R.C., Hasselman, D.P.H., Lange, F.F. (eds) Concepts, Flaws, and Fractography. Fracture Mechanics of Ceramics, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2991-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2991-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2993-0

  • Online ISBN: 978-1-4684-2991-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics