Fracture Mechanics, Statistical Analysis and Fractography of Carbides and Metal Carbides Composites

  • J. L. Chermant
  • A. Deschanvres
  • A. Iost
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 1)


Fractography by scanning and transmission electron microscopy was used to study the fracture in transition metal carbides (TiC and WC) and composites: TiC-Co, TiC-Ni, TiC-NiCr and WC-Co. The fracture of the carbide crystals is always brittle with river patterns and Wallner lines. When the carbide crystals of the composites are small, the fracture is intergranular and dimples are observed in the matrix. The principal factor of the micrographie feature is the diameter of the carbide crystals.

The morphology of the fracture path was investigated statistically using punctual analysis and a modification of the Johnson- Saltykov method. The results obtained on polished and fractured surfaces were compared by quantitative metallography. This investigation confirms that the WC-Co fracture by three-point bending is essentially intergranular and that this intergranular fracture path is random.

Three-point bending tests were used in the investigation of the effective surface energy of crack initiation, ϒi, and of the stress intensity factor, KI, for WC-Co composites. It was first determined that the usual methods for such brittle materials are in agreement for WC-Co, and permit the determination of the value of the critical stress intensity factor. Further, the variations of Yi and KIC were studied as a function of the mean particle size diameter of carbide crystals and of the different cobalt volumic ratio. The variations evolve regularly and can be explained by a statistical analysis of the fractured paths in SEM and ТЕМ.


Stress Intensity Factor Titanium Carbide Rupture Stress Fracture Path Critical Stress Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Kreimer, N.A. Alekseyeva, Fiz. Metal. Metalloved. 13, 609 (1962).Google Scholar
  2. 2.
    F. R. N. Nabarro, S. Bartolucci Luyckx, Trans. Jap. Inst. Met. 9 suppl., 610 (1968).Google Scholar
  3. 3.
    R. T. De Hoff, F.N. Rhines, in Quantitative Microscopy, Mc Graw-Hill Book Co, 1968.Google Scholar
  4. 4.
    A. S. Tetelman, A. J. Mc Evily, in Fracture of Structural Materials, John Wiley and Sons, 1967.Google Scholar
  5. 5.
    D. François, L. Joly, in La Rupture des Métaux, Masson et Cie, 1972.Google Scholar
  6. 6.
    R.W. Davidge, G. Tappin, J. Mater. Sci. 3, 165 (1968).CrossRefGoogle Scholar
  7. 7.
    G. Manier, Thèse de 3ème Cycle, Caen juillet 1971.Google Scholar
  8. 8.
    G. Hautier, Thèse de Docteur Ingénieur, Caen septembre 1972.Google Scholar
  9. 9.
    Atlas des Micrographies Electroniques des Ruptures Fragiles ou Prématurées, 1964, 1966 et 1970. Service Technique des Armes et Constructions Navales, Laboratoire de Physique des Métaux, Paris.Google Scholar
  10. 10.
    R. L. Scott, A. Turkalo, Proc. Am. Soc. Test. Mat. 57, 536 (1957).Google Scholar
  11. 11.
    M. Drouzy, Prakt. Metal. 481 (1967).Google Scholar
  12. 12.
    W.A. Johnson, Met. Progr. 49, 87 (1946).Google Scholar
  13. 13.
    S.A. Saltykov, in “Stereometric Metallography”, 2nd Ed., Metal-lurgizdat, Moscow, 1958, p. 446, quoted by (3) p. 149.Google Scholar
  14. 14.
    A. Hara, T. Nishikawa, S. Yazu, Planseeb. Pulvermet. 18, 28 (1970).Google Scholar
  15. 15.
    S. Tolansky, in Multiple beam Interferometry of Surfaces and Films, Clarendon Press, 1948 p. 45.Google Scholar
  16. 16.
    J. R. Low, Trans AIME, J. Metals 206, 982 (1956).Google Scholar
  17. 17.
    E. Mencarelli, H. De Leiris, J.C. Nomine, Mém. Scient. Rev. Met. 68, 407 (1966).Google Scholar
  18. 18.
    J. L. Chermant, P. Delavignette, A. Deschanvres, J. Less Common Metals 21, 89 (1970).CrossRefGoogle Scholar
  19. 19.
    J. Vicens, J.L. Chermant, Phys. Stat. Sol. 7, 217 (1971).CrossRefGoogle Scholar
  20. 20.
    J.L. Chermant, A. Deschanvres, E. Mencarelli, Metallography 4, 415 (1971).CrossRefGoogle Scholar
  21. 21.
    J.L. Chermant, M. Coster, A. Deschanvres, to be published.Google Scholar
  22. 22.
    M. Coster, J.L. Chermant, A. Deschanvres, C.R. Acad. Sci. 271С, 446 (1970).Google Scholar
  23. 23.
    J. Gurland, Trans. AIME 227, 1146 (1963).Google Scholar
  24. 24.
    A. Gangulee, J. Gurland, Trans. AIME 239, 269 (1967).Google Scholar
  25. 25.
    H. Corten, in Modem Composite Materials, Ed. L.J. Broutman and R.H. Krock, Addison-Wesley Publ. Co., 1967, ch. II, p. 27.Google Scholar
  26. 26.
    J.L. Chermant, M. Coster, A. lost, 11th Annual Meeting of the European High Pressure Research Group held in London on 16th to 18th April 1973.Google Scholar
  27. 27.
    J. Gurland, Trans. AIME 212, 452 (1958).Google Scholar
  28. 28.
    M. Coster, private communication.Google Scholar
  29. 29.
    J.E. Brown, W.F. Srawley, ASTM-STP 410 (1966).Google Scholar
  30. 30.
    H.G. Tattersall, G. Tappin, J. Mat. Sci. 1, 296 (1966).CrossRefGoogle Scholar
  31. 31.
    C. Turner, Mat. Sci. Eng. 11, 275 (1973).CrossRefGoogle Scholar
  32. 32.
    G. Feddern, E. Macherauch, Z. Metallk. 62, 805 (1971).Google Scholar
  33. 33.
    J.A. Coppola, R.C. Bradt, J. Amer. Ceram. Soc. 55, 455 (1972)CrossRefGoogle Scholar
  34. 34.
    J.F. Lynch, R.C. Bradt, J. Amer. Ceram. Soc. 56, 228 (1973).CrossRefGoogle Scholar
  35. 35.
    P.L. Gut shall, G.E. Gross, Eng. Fract. Mech. 463 (1969).Google Scholar
  36. 36.
    F.F. Lange, J. Amer. Ceram. Soc. 54, 614 (1971).CrossRefGoogle Scholar
  37. 37.
    A.S.T.M. Stand. 31, 1018 (1968).Google Scholar
  38. 38.
    A.S.T.M. Stand. E339, 955 (1972).Google Scholar
  39. 39.
    R.W. Davidge, G. Tappin, Proc. Brit. Ceram. Soc. 15, 47 (1970).Google Scholar
  40. 40.
    P. Kenny, Powd. Met. 27, 22 (1971).Google Scholar
  41. 41.
    F.A. Johnson, J.C. Radon, Eng. Mat. Design 10, 883 (1971).Google Scholar
  42. 42.
    R.L. Bertolotti, J. Amer. Ceram. Soc. 56 107 (1973).CrossRefGoogle Scholar
  43. 43.
    P.W.R. Beaumont, A.S. Tetelman, Report UCLA-ENG-7269, Aug. 1972, School of Engineering and Applied Science, University of California, Los Angeles.Google Scholar
  44. 44.
    A.G. Spektor, Zavod. Lab. 16, 173 (1950).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • J. L. Chermant
    • 1
  • A. Deschanvres
    • 1
  • A. Iost
    • 1
  1. 1.Groupe de Cristallographie et Chimie du Solide, E.R.A. n° 305, Laboratoire de Chimie Minérale IndustrielleUniversité de CaenCaen CedexFrance

Personalised recommendations