Advertisement

Fractographic Identification of Strength-Controlling Flaws and Microstructure

  • Roy W. Rice
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 1)

Abstract

Previously the main approach to understanding the strength behavior of ceramics was through the study of its dependence on microstructure. More recently, the fracture mechanics approach, with great emphasis on fracture energy, has come to the fore. Both approaches are incomplete by themselves; they must be correlated with the character of actual failure origins. The major purpose of this paper is to present results of recent fracture origin determinations and utilize these to correlate and modify both approaches. This three-way correlation more extensively incorporates into fracture mechanics the important, if not dominating, effect micro- structure has on mechanical behavior. The large back-ground of strength-microstructure data is more effectively used and behavior is more clearly linked to processing. A sounder basis is laid for comparison of bodies made by different people, processes, etc., which is important to broader application of ceramics.

Keywords

Fracture Energy Flaw Size Fracture Initiation Failure Stress Fracture Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Rice, to be published in the Proceedings “Surface and Interfaces of Glass and Ceramics.”Google Scholar
  2. 2.
    A. G. Evans, R. W. Davidge, J. Nuc. Mat. 33, 249–260(1969).CrossRefGoogle Scholar
  3. 3.
    A. G. Evans, R. W. Davidge, J. Mat. Sci. 5, 314–325 (1970).CrossRefGoogle Scholar
  4. 4.
    J. R. McLaren, G. Tappin, R. W. Davidge, Proc. Brit. Ceram. Soc. No. 20, 259–274 (June 1972).Google Scholar
  5. 5.
    A. G. Evans, G. Tappin, ibid., 275–297.Google Scholar
  6. 6.
    F. H. Wittmann, Ju. Zaitsev in Mechanical Behavior of Materials, Vol. IV, Concrete and Cement Paste, Glass and Ceramics, pp. 84–95, The Soc. of Mat. Sci., Japan (1972).Google Scholar
  7. 7.
    O. L. Bowie, J. Mat. Phys. 35 (1), 60–71 (1956).Google Scholar
  8. 8.
    D. P. H. Hasselman, J. Am. Ceram. Soc. 52 (8), 457 (1969).CrossRefGoogle Scholar
  9. 9.
    R. B. Matthews, W. G. Hutchings, F. Havelock, to be published in J. Canadian Ceram. Soc.Google Scholar
  10. 10.
    R. W. Rice, W. J. McDonough, pp. 394–403, in same source as Ref. 6.Google Scholar
  11. 11.
    B. Molnar, R. W. Rice, Bull. Am. Ceram. Soc., 505–509, (1972).Google Scholar
  12. 12.
    S. Dutta, Army Materials amp; Mechanics Research Center, Watertown, Mass. (1973), private communication.Google Scholar
  13. 13.
    R. F. Cannon, J. J. A. Roberts, R. J. Beals, J. Am. Ceram. Soc. 54 (2), 105–112 (1971).CrossRefGoogle Scholar
  14. 14.
    J. E. Bailey, N. A. Hill, Proc. Brit. Ceram. Soc. No. 15, pp. 15–35 (Jan. 1970).Google Scholar
  15. 15.
    R. W. Rice, to be published (Abstract: Am. Ceram. Soc. Bull. 48 (9), 893, 1969 ).Google Scholar
  16. 16.
    B. R. Steele, F. Rigby and M. C. Hesketch, Proc. Brit. Ceram. Soc. No. 6, pp. 83 – 94 (1966).Google Scholar
  17. 17.
    S. C. Carniglia, J. Am. Ceram. Soc. 55/12, 610 – 18, (1972).CrossRefGoogle Scholar
  18. 18.
    R. W. Rice, Proc. Brit. Ceram. Soc. No. 1 pp. 99–123 (March 1969).Google Scholar
  19. 19.
    W. H. Rhodes, P. L. Berneburg, R. M. Cannon, W. C. Steele, “Micro structure Studies of Polycrystalline Refractory Oxides,” Summary report for Contract N00019-72-C-0298 (April 1973).Google Scholar
  20. 20.
    R. W. Rice, Proc. Brit. Ceram. Soc. No. 20, pp. 205–257 (June 1972).Google Scholar
  21. 21.
    C. D. Pears, H. S. Starrett, “An Experimental Study of the Weibull Volume Theory” Tech. Report No. AFML-TR-66-228 (March 1967).Google Scholar
  22. 22.
    S. Prochazka, “Investigation of Ceramics for High Temperature Turbine Vanes,” Report for Contract N00019-71-C-0290, 1972 (see also this volume).Google Scholar
  23. 23.
    A. A. Solomon, J. Am. Ceram. Soc. 55 (l2), 622–27 (1972).CrossRefGoogle Scholar
  24. 24.
    R. W. Rice, W. J. McDonough, pp. 422–431 in same source as Ref. 6.Google Scholar
  25. 25.
    S. C. Carniglia, J. Am. Ceram. Soc. 48 (11), 580–583 (1965).CrossRefGoogle Scholar
  26. 26.
    A. G. Evans, R. W. Davidge, Phil. Mag. 20 (164), 373–388 (Aug. 1969).CrossRefGoogle Scholar
  27. 27.
    S. W. Freiman, K. R. McKinney, H. L. Smith, this volume.Google Scholar
  28. 28.
    R. G. Hoagland, G. T. Hahn, A. R. Rosenfield, R. Simon, G. D. Nicholson, “Influence of Micro-structure on Fracture Propagation in Rock,” Final report of Bureau of Mines Contract No. H0210006 (Jan. 1972).Google Scholar
  29. 29.
    С. E. Kesler, D. J. Naus, J. L. Lott, pp. 113–124, in same source as Ref. 6.Google Scholar
  30. 30.
    J. A. Kuszyk, R. C. Bradt, to be published in J. Am. Ceram. Soc.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Roy W. Rice
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations