Analysis of Cracks in Heterogeneous Solids

  • G. P. Sendeckyj
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 1)


It is well known that the strength of inherently brittle solids (such as, ceramics and some high performance composites) is governed by the propagation of a crack from a critical defect. Prediction of strength for such materials depends upon understanding the interaction between cracks and the heterogeneous structure of the material. For example, Cherepanov1 using dimensional analysis showed that the strength of a particulate composite with weak interfaces is governed by
$$ \sigma \surd d/{K_1} = G\left( {{\mu _2}/{\mu _1},D/{K_1},{\upsilon _1},{\upsilon _2},q} \right) $$
Where µ, υ, D, K1 q, d and σ are the shear modulus, Poisson’s ratio, adhesion modulus of the interface between the reinforcement and the matrix, adhesion modulus of the matrix, volume fraction of reinforcement, reinforcement dimension, and strength, respectively. Furthermore, the subscripts 1 and 2 refer to the matrix and reinforcement respectively. Equation (1) shows that the strength increases as the characteristic dimension d of the reinforcement decreases, other things being equal. Experimental data on rubber containing 42% NaCl crystals by weight indicates that Eq. (1) is correct.1


Crack Front Interface Crack Plane Deformation Radial Crack Rigid Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. P. Cherepanov, J. Appl. Mech. Tech. Phys., Vol. 8, No. 2, 45 (1967).CrossRefGoogle Scholar
  2. 2.
    L. T. Berezhnitskii, V. V. Panasyuk, I. I. Trush, Fiz.- Khim. Mekh. Mater., Vol. 6, No. 5, 36 (1970).Google Scholar
  3. 3.
    L. T. Berezhnitskii, V. V. Panasyuk, G. P. Cherepanov, Kontsentratsiya Napryazhenii, Vol. 3, 10 (1971).Google Scholar
  4. 4.
    V. V. Panasyuk, L. T. Berezhnitskii, I. I. Trush, Fiz.- Khim. Mekh. Mater., Vol. 7, No. 1, 108 (1971).Google Scholar
  5. 5.
    G. P. Cherepanov, in Problemy Mekhaniki Tverdogo Deformirovannogo Tela, Izd. Sudostroenie, Leningrad (1970), pp. 467–479.Google Scholar
  6. 6.
    G. C. Sih, H. Liebowitz, in ( H. Liebowitz, ed.) Fracture, Academic Press, New York (1968), Vol. 2, pp. 67–190.Google Scholar
  7. 7.
    G. P. Sendeckyj, in (J. A. Simmons, R. deWit, and R. Bulluogh) Fundamental Aspects of Dislocation Theory, National Bureau of Standards (U. S.) Special Publication 317, Vol. 1, 57 (1970).Google Scholar
  8. 8.
    G. P. Sendeckyj, Engng Fracture Mech., in press.Google Scholar
  9. 9.
    B. Gross, “Some Plane Problem Elastostatic Solutions for Plates Having a V-Notch”, PhD Thesis, Case Western Reserve University (1970).Google Scholar
  10. 10.
    N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, 4th edition, Noordhoff, Amsterdam (1963).Google Scholar
  11. 11.
    D. B. Bogy, J. Appl. Mech., Vol. 38, 911 (1971).CrossRefGoogle Scholar
  12. 12.
    M. L. Williams, J. Appl. Mech., Vol. 19, 526 (1952).Google Scholar
  13. 13.
    M. L. Williams, Bull. Seism. Soc. America, Vol. 49, 199 (1959)Google Scholar
  14. 14.
    D. B. Bogy, J. Appl. Mech., Vol. 38, 377 (1971).CrossRefGoogle Scholar
  15. 15.
    A. R. Zak and M. L. Williams, J. Appl. Mech., Vol. 30, 142 (1963).CrossRefGoogle Scholar
  16. 16.
    E. Smith, Int. J. Engng Scit Vol. 7, 973 (1969).CrossRefGoogle Scholar
  17. 17.
    G. P. Sendeckyj, 3rd ASTM Conf. Composite Materials: Testing and Design, Williamsburg, VA, March 1973.Google Scholar
  18. 18.
    G. P. Sendeckyj, AFFDL-TM-73-42-FBC, May 1973.Google Scholar
  19. 19.
    G. P. Cherepanov, Izv. Akad. Nauk SSSR, Mekh. Mashin., No. 1. 131 (1962).Google Scholar
  20. 20.
    A. H. England, J. Appl. Mech., Vol. 33, 637 (1966).CrossRefGoogle Scholar
  21. 21.
    A. Prusov, Prikl. Mekh., Vol. 2, No. 6, 11 (1966).Google Scholar
  22. 22.
    V. Grilitskii, K. G. Stasyuk, Prikl. Mekh., Vol. 6, No. 10. 79 (1970).Google Scholar
  23. 23.
    E. Smith, Int. J. Fracture Mech., Vol. 4, 397 (1968).Google Scholar
  24. 24.
    M. Gotoh, Int. J. Fracture Mech., Vol. 3, 207 (1967).Google Scholar
  25. 25.
    Plato, Z.A.M.M., Vol. 51, 107 (1971).Google Scholar
  26. 26.
    G. P. Sendeckyj, Int. J. Fracture Mech., in press.Google Scholar
  27. 27.
    G. P. Sendeckyj, in Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536 (1973), in press.Google Scholar
  28. 28.
    S.K. Khannanov, Phys. Metals Metall., Vol. 33, No. 1, 211 (1972).Google Scholar
  29. 29.
    O. Tamate, Int. J. Fracture Mech., Vol. 4, 257 (1968).Google Scholar
  30. 30.
    G. Plato, Z.A.M.M., Vol. 50, 770 (1970).Google Scholar
  31. 31.
    Y. C. Hsu, V. Shivakumar, AFOSR-TR-72-1929 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • G. P. Sendeckyj
    • 1
  1. 1.Advanced Composites Branch, Structures Division Air Force Flight Dynamics LaboratoryWright-Patterson Air Force BaseUSA

Personalised recommendations