Origin and Use of Fracture Mechanics

  • F. F. Lange
Part of the Fracture Mechanics of Ceramics book series (FMOC, volume 1)


Numerous theoretical calculations have indicated that the tensile strength of materials should lie close to ∿ 1/10 of the material’s elastic modulus, E (see Kelley(l) for a compendium). On the other hand, due to the presence of cracks and flaws, measured strengths lie between E/103 and E/102. By eliminating pre-existing cracks, tensile strengths can approach theoretical estimates. This has been demonstrated, for example, by Ernsberger (2) for the case of glasses.


Fracture Mechanic Stress Intensity Factor Acoustic Emission Crack Extension Crack Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kelley, Strong Solids, pp. 1–35, Clarendon Press, Oxford (1966).Google Scholar
  2. 2.
    F. M. Ernsberger, Proc. 8th Inter. Conf. on Glass, Soc. of Glass Tech., Sheffield (1969).Google Scholar
  3. 3.
    С. E. Inglis, Inst. Naval Archetects Trans. 55, 219 (1913).Google Scholar
  4. 4.
    A. A. Griffith, Phil. Trans. Roy. Soc. (Lon.) 221A, 163 (1920),Google Scholar
  5. 5.
    R. A. Sack, Proc. Phys. Soc. (Lon.) 58, 729 (1946).CrossRefGoogle Scholar
  6. 6.
    H. Neuber, Theory of Notch Stresses, (Eng. Trans.), Springer, Berlin (1958).Google Scholar
  7. 7.
    E. Orowan, Welding J. 34, Res. Supple. 157-S (1955).Google Scholar
  8. 8.
    K. Wolf, Z. Angew. Math. Mech. 3, 107 (1923).CrossRefGoogle Scholar
  9. 9.
    I. N. Sneddon, Proc. Phys. Soc. (Lon.) 187A, 229 (1966).Google Scholar
  10. 10.
    G. R. Irwin, Hanbuck der Physik, Vol. 6, p. 551, Springer, Berlin (1958).Google Scholar
  11. 11.
    H. M. Westergaard, J. Appl. Mech. 61, A49 (1939).Google Scholar
  12. 12.
    P. C. Paris and G. C. Sih, ASTM STP No. 381, p. 30 (1965).Google Scholar
  13. 13.
    W. F. Brown nad J. E. Srawley, ASTM STP No. 410 (1966).Google Scholar
  14. 14.
    A. G. Evans, this volume.Google Scholar
  15. 15.
    W. С. Clark, Jr., W.A. Logsdon, this volume.Google Scholar
  16. 16.
    R. С., Sbab, A. S. Kobayashi, ASTM STP 513, pp. 3–21 (1973).Google Scholar
  17. 17.
    R. W. Rice, this volumeGoogle Scholar
  18. 18.
    O. R. Gericke, this volume.Google Scholar
  19. 19.
    A. G. Evans, S. M. Wiederhorn, Nat. Bur. Stand. Interim Rep. 73–147, March (1973).Google Scholar
  20. 20.
    W. B. Hillig, R. J. Charles, High-Strength Materials, Ed. by V. F. Zackay, pp. 682–705, John Wiley and Sons, New York (1965).Google Scholar
  21. 21.
    R. Dutton, this volume.Google Scholar
  22. 22.
    F. F. Lange,submitted to J. Am. Ceram. Soc.Google Scholar
  23. 23.
    S. M. Wiederhom, this volume.Google Scholar
  24. 24.
    C. F. Tiffany, J. N. Masters, ASTM STP 381, p. 249 (1964).Google Scholar
  25. 25.
    H. Dunegan, A. S. Tetelman, Eng. Frac. Mech. 2, 387 (1971).CrossRefGoogle Scholar
  26. 26.
    M. J. Noone, R. L. Mehan, this volume.Google Scholar
  27. 27.
    A. G. Evans, M. Linzer, to be pub., J. Am. Ceram. Soc. (1973).Google Scholar
  28. 28.
    R. C. Bates, W. G. Clark, Jr., ASM Trans. 62, 381 (1969).Google Scholar
  29. 29.
    H. P. Kirchner and R. M. Gruver, this volume.Google Scholar
  30. 30.
    A. B. J. Clark, G. R. Irwin, Exp. Mech. 6, 321 (1966).CrossRefGoogle Scholar
  31. 31.
    F. F. Lange, Fracture and Fatigue of Composites, Ed. by L. J. Broutman and R. H. Krock, Academic Press (in press).Google Scholar
  32. 32.
    R. C. Bradt, to be pub. J. Am. Ceram. Soc.Google Scholar
  33. 33.
    R. W. Davidge, this volume.Google Scholar
  34. 34.
    F. F. Lange, J. Am. Ceram. Soc., to be published.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • F. F. Lange
    • 1
  1. 1.Westinghouse Research Laboratories Materials ScienceUSA

Personalised recommendations