Estimation with Inviability and Impenetrance

  • Roy Robinson


The analysis of segregations in which an allele at one locus displays inviability while the allele at the other displays impenetrance presents much the same problems as for impenetrance alone. The expectations may seem more complicated but the estimating formulae are either identical or analogous to many of those given earlier. Locus a will be assumed to be impenetrant and locus b the inviable. The expectations for the coupling testcross with two recessive genes are:
$$\begin{matrix}++ & +b & a+ & ab\\\frac{1-\alpha p}{1+u} & \frac{u\left[ 1-\alpha \left( 1-p \right) \right]}{1+u} & \frac{\alpha p}{1+u} & \frac{\alpha u\left( 1-p \right)}{1+u}\\a & b & c & d\\\end{matrix}$$
$$p=\frac{c\left( b+d \right)}{d\left( a+c \right)+c\left( b+d \right)},\text{ }\alpha \text{=}\frac{d\left( a+c \right)+c\left( b+d \right)}{\left( a+c \right)\left( b+d \right)},\text{ }u=\frac{b+d}{a+c}.$$


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Plenum Publishing Company Ltd. 1971

Authors and Affiliations

  • Roy Robinson

There are no affiliations available

Personalised recommendations