Advertisement

Functional Organization of the Limbic System in the Process of Registration of Information: Facts and Hypotheses

  • O. S. Vinogradova

Abstract

Morphological data on structures of the principal limbic circuit show that they constitute a complex, hierarchically organized system, and that this is indeed a system with important intrinsic principles of organization. The morphofunctional interactions among the elements of this system are obvious from the successive transneuronal degeneration of the limbic structures after an interruption of their interconnections (Cowan and Powell, 1954; Bleier, 1969). The principal limbic circuit is supplemented by very significant interactions between the hippocampus and the brain stem reticular formation, with the septum as the intermediary link.

Keywords

Limbic System Sensory Stimulus Medial Septal Perforant Path Lateral Septal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W. R. Organization ot the rhinencephalon. In Reticular formation of the brain. Boston, 1959, p. 621.Google Scholar
  2. Adey, W. R. Neurophysiological correlates of information and storage in brain tissue. In E. Stellar and J. M. Spraque (Eds.), Progress in physiological psychology. New York: Academic Press, 1966, p. 1.Google Scholar
  3. Andersen, P., and Lømo, T. Control of hippocampal output by afferent volley frequency. Progress in Brain Research, 1967, 27, 400.PubMedCrossRefGoogle Scholar
  4. Andersen, P., and Lømo, T. Mode of control of hippocampal pyramidal cell discharges. In R. Wahlen (Ed.), The neural control of behavior. New York: Academic Press, 1970, p. 3.Google Scholar
  5. Andersen, P., and Løyning, Y. Interaction of various afferents on CA1 neurons and dentate granule cells. In Physiologie de l’hippocampe. Paris: Montpellier, 1962, p. 23.Google Scholar
  6. Andersen, P., Eccles, J. C., and Lining, Y. Pathway of postsynaptic inhibition in the hippocampus. Journal of Neurophysiology, 1964, 27, 608.PubMedGoogle Scholar
  7. Andersen, P., Buss, T. V. P., and Skrede, K. K. Lamellar organization of hippocampal excitatory pathways. Experimental Brain Research, 1971, 13, 222.Google Scholar
  8. Andersen, P., Bland, B. H., and Dudar, J. D. Organization of the hippocampal output. Experimental Brain Research, 1973, 17, 152.CrossRefGoogle Scholar
  9. Andy, O. J., Peeler, D. F., Mitchell, J., Foshee, D. P., and Koshino, K. The hippocampal contribution to “learning and memory.” Conditional Reflex, 1968, 3, 217.PubMedGoogle Scholar
  10. Angevine, J. B. Time of neuron origin in the hippocampal region: An autoradiographic study in the mouse. Experimental Neurology Supplement, 1965, p. 2.Google Scholar
  11. Anokhin, P. K., and Sudakov, K. V. Reciprocal relations between the hippocampus and reticular formation in conditions of electronarcosis. Doklady Academii Nauk, 1970, 192, 934 (in Russian).Google Scholar
  12. Arutunov, V. S., Narikashvili, S. P., and Tetavosyan, T. G. Neuronal activity of raphe nuclei and brain stem reticular formation in unanaesthetized cat. Fiziologicheskii Zhurnal, 1972, 58(2), 337 (in Russian).Google Scholar
  13. Barbizet, J. Defect of memorizing of hippocampal-mammillary origin. Journal of Neurology, Neurosurgery and Psychiatry, 1963, 26, 127.CrossRefGoogle Scholar
  14. Bechterew, W. Demonstration eines Gehirns mit Zerstörung der vorderen und inneren Theile der Hirnrinde beider Schläfenlappen. Neurologische Zentralblatt, 1890, 19, 990.Google Scholar
  15. Belenkov, N.J. The conditioned reflex and the reticular formation. In Structural and functional bases of the conditioned reflexes. Leningrad, 1970, p. 18 (in Russian).Google Scholar
  16. Bell, C., Sierra, G., Buenida, N., and Segundo, J. P. Sensory properties of neurons in the mesencephalic reticular formation. Journal of Neurophysiology, 1964, 27, 961.PubMedGoogle Scholar
  17. Bennett, T. L. Hippocampal theta activity and behavior: A review. Communications in Behavioral Biology, 1971, 6, 37.Google Scholar
  18. Blackstad, T. W. On the termination of some afférents to the hippocampus and fascia dentata. Acta Anatomica (Basel), 1958, 35, 202.CrossRefGoogle Scholar
  19. Blackstad, T. W. Ultrastructural studies on the hippocampal region. Progress in Brain Research, 1963, 3, 122.CrossRefGoogle Scholar
  20. Blackstad, T. W., Brink, K., Hem, J., and Jeune, B. Distribution of hippocampal mossy fibers in the rat: An experimental study with silver impregnation methods. Journal of Comparative Neurology, 1970, 138, 433.PubMedCrossRefGoogle Scholar
  21. Bleier, R. Retrograde transsynaptic cellular degeneration in mammillary and ventral tegmental nuclei following limbic decortication in rabbits of various ages. Brain Research, 1969, 15, 365.PubMedCrossRefGoogle Scholar
  22. Buss, T. V. P., and Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology (London), 1973, 232(2), 331.Google Scholar
  23. Bloch, V. Facts and hypotheses concerning memory consolidation processes. Brain Research, 1970, 24, 561.PubMedCrossRefGoogle Scholar
  24. Bragin, A. G. Responses of the pyramidal neurons of the field CA3 to electric stimulation of the dentate fascia. In A. N. Cherkashin and K. N. Kultas (Eds.), Limbic system of the brain. Puschino-on-Oka, 1973, p. 141 (in Russian).Google Scholar
  25. Bragin, A. G. The role of the dentate fascia in habituation of sensory reactions of the hippocampal CA3 neurons. In Proceedings of the Third Conference on Memory Problems. Puschino-on-Oka, 1974, p. 186 (in Russian).Google Scholar
  26. Bragin, A. G., and Vinogradova, O. S. Phenomenon of “chronic” potentiation in the cortical afferent input of the hippocampal CA3 neurons. In E. A. Gromova (Ed.), Physiological mechanisms of memory. Puschino-on-Oka, 1973, p. 8 (in Russian).Google Scholar
  27. Bragin, A. G., Vinogradova, O. S., Kuznetzov, V. I., and Bortnik, A. T. Physiological effects of autoimmunilation influences upon the hippocampal dentate fascia. Doklady Academii Nauk, 1974, 217, 1221 (in Russian).Google Scholar
  28. Brazhnik, E. S. Some changes of the neuronal reactions in different hippocampal fields after reticulo-septal input disconnection. In Proceedings of the Third Conference on Memory Problems. Puschino-on-Oka, 1974, p. 187 (in Russian).Google Scholar
  29. Brazhnik, E. S., and Vinogradova, O. S. The influence of long-term trace development upon the neuronal reactions in the hippocampal CA3 field. In A. N. Cherkashin and K. N. Kultas (Eds.), The limbic system of the brain. Puschino-on-Oka, 1973, p. 174 (in Russian).Google Scholar
  30. Brazhnik, E. S., and Vinogradova, O. S. The effect of hippocampo-septal disconnection upon the activity of the hippocampal neurons. Zhurnal Vysshei Nervnoi Deyatel’nosti, 1974, 24, (in Russian).Google Scholar
  31. Brodal, A. The hippocampus and the sense of smell. Brain, 1947, 70, 179.PubMedCrossRefGoogle Scholar
  32. Cowan, W. M., and Powell, T. P. S. An experimental study of the relation between the medial mam-millary nucleus and the cingulate cortex. Proceedings of the Royal Society of London, Series B, 1954, 143, 115.CrossRefGoogle Scholar
  33. Crain, B., Cotman, C., Taylor, D., and Lynch, G. A. quantitative electron microscopic study of syn-aptogenesis in the dentate gyrus of the rat. Brain Research, 1973, 63, 195.PubMedCrossRefGoogle Scholar
  34. Davidowa, H., Nicolai, A., and Rüdiger, W. Einfluss der Ausschaltung des Septum auf Spontanaktivität und Responsivität von Hippokampusneuronen. Acta Biologica et Medica Germanica, 1972, 29, 55.PubMedGoogle Scholar
  35. Diamond, J., Gray, E. G., and Yasargil, G. M. The function of the dendritic spine: A hypothesis. In P. Andersen and J. K. S. Jansen (Eds.), Excitatory synaptic mechanisms. Oslo, 1970, p. 213.Google Scholar
  36. Domesick, V. B. Projections from the cingulate cortex in the rat. Brain Research, 1969, 12, 296.PubMedCrossRefGoogle Scholar
  37. Douglas, R.J. The hippocampus and behavior. Psychological Bulletin, 1967, 67, 416.PubMedCrossRefGoogle Scholar
  38. Dubrovinskaya, N. V. Phasic reactions of the hippocampal neurons and their possible functional significance. Zhurnal Vysshei Nenmoi Deyatel’nosti, 1971, 21, 1084 (in Russian).Google Scholar
  39. De France, J. F., Kitai, S. T., and Shimono, T. Electrophysiological analysis of the hippocampal-septal projections. 1. Response and topographical characteristics. Experimental Brain Research, 1973, 17, 447.Google Scholar
  40. Girgis, M. The rhinencephalon. Acta Anatomica, 1970, 76, 157.PubMedCrossRefGoogle Scholar
  41. Gottlieb, D. J., and Cowan, W. M. Autoradiographic studies of the commissural and ipsilateral association connections of the hippocampus and dentate gyrus of the rat. I. The commissural connections. Journal of Comparative Neurology, 1973, 149, 393.PubMedCrossRefGoogle Scholar
  42. Grantyn, A., and Grantyn, R. Die Beziehungen unspezifischer Strukturen des Hirnstamms zum Hippocampus (übrsicht morphologischer und elektrophysiologischer Befunde). Wissenschaftliche Zeitschrift, Karl-Marx Universität, 1970, 19, 249.Google Scholar
  43. Grantyn, A., Grantyn, R., and Hang, T. Hippocampaler Einzellantworten auf mesencephale Reizungen nach Septumläsion. Acta Biologica et Medica Germanica, 1971, 26, 985.PubMedGoogle Scholar
  44. Grantyn, R., Margnelli, M., Mancia, M., and Grantyn, A. Postsynaptic potentials in the mesencephalic and pontomedullar retucular regions underlying descending limbic influences. Brain Research, 1973, 56, 107.PubMedCrossRefGoogle Scholar
  45. Grastyan, E. The hippocampus and higher nervous activity. In M. A. B. Brazier (Ed.), The CNS and behavior. J. Macy Foundation Conference, 1959, p. 341.Google Scholar
  46. Guillery, R. W. Degeneration in the postcommissural fornix and mammillary peduncle of the rat. Journal of Anatomy (London), 1956, 90, 350.Google Scholar
  47. Hamlyn, L. H. The fine structure of the mossy fibre endings in the hippocampus of the rabbit. Journal of Anatomy (London), 1962, 96, 112.Google Scholar
  48. Hamlyn, L. H. An electron microscope study of pyramidal neurons in the Ammon’s horn of the rabbit. Journal of Anatomy (London), 1963, 97, 189.Google Scholar
  49. Haug, F. M. S., Blackstad, T. W., Simonsen, A. H., and Zimmer, Y. Timm’s sulfide silver reaction for zinc during experimental anterograde degeneration of hippocampal mossy fibers. Journal of Comparative Neurology, 1971, 142, 23.PubMedCrossRefGoogle Scholar
  50. Hirsh, R. The effect of septal input upon hippocampal unit response in normal conditions in rats. Brain Research, 1973, 58, 234.PubMedCrossRefGoogle Scholar
  51. Hjorth-Simonsen, A. Hippocampal efferents to the ipsilateral entorhinal area: An experimental study in the rat. Journal of Comparative Neurology, 1971, 142, 417.PubMedCrossRefGoogle Scholar
  52. Hjorth-Simonsen, A. Some intrinsic connections of the hippocampus in the rat: An experimental analysis. Journal of Comparative Neurology, 1973, 147, 145.PubMedCrossRefGoogle Scholar
  53. Hjorth-Simonsen, A., and Jeune, B. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. Journal of Comparative Neurology, 1972, 144, 215.PubMedCrossRefGoogle Scholar
  54. Hostetter, G. Hippocampal lesions in rats weaken the retrograde amnesic effect of ECS. Journal of Comparative Physiology and Psychology, 1968, 66, 349.CrossRefGoogle Scholar
  55. Ibata, Y., and Otsuka, N. Electron microscopic demonstration of zinc in the hippocampal formation using Timm’s sulfide-silver technique. Journal of Histochemistry and Cytochemistry, 1969, 17, 171.PubMedCrossRefGoogle Scholar
  56. Ibata, Y., Desiraju, T., and Pappas, G. D. Light and electron microscopic study of the projection of the medial septal nucleus to the hippocampus of the cat. Experimental Neurology, 1971, 33, 103.PubMedCrossRefGoogle Scholar
  57. Jones, E. G., and Powell, T. P. S. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 1970, 93, 793.PubMedCrossRefGoogle Scholar
  58. Karmos, G., Grastya’n, E., Losonczy, H., Vereczkey, L., and Grosz, J. The possible role of the hippocampus in the organization of the orientation reaction. Acta Physiologica Academiae Scientiarum Hungaricae, 1965, 26, 131.PubMedGoogle Scholar
  59. Kilmer, W. L., and McLardy, T. A. model of hippocampal CA3 circuitry. International Journal of Neuroscience, 1970, 1, 107.PubMedCrossRefGoogle Scholar
  60. Kim, C., Choi, H., Kim, J. K., Chang, H. K., Park, R. S., and Kang, J. Y. General behavioral activity and its component patterns in hippocampectomized rats. Brain Research, 1970, 19, 379.PubMedCrossRefGoogle Scholar
  61. Kimble, D. P. Possible inhibitory functions of the hippocampus. Neuropsychology, 1969, 7, 235.CrossRefGoogle Scholar
  62. Kitchigina, V. F., and Vinogradova, O. S. The influence of the hippocampal stimulation upon the reticular formation units. Fiziologicheskii Zhurnal, 1974, 60, 1648 (in Russian).Google Scholar
  63. Kitchigina, V. F. The role of the hippocampal field CA3 in the regulation of the field CA1 activity. In Proceedings of the Third Conference on Memory Problems. Puschino-on-Oka, 1974, p. 195 (in Russian).Google Scholar
  64. Konovalov, V. P., and Vinogradova, O. S. Trace phenomena in neuronal reactions of the mammillary bodies. Zhurnal Vysshei Nervnoi DeyateVnosti, 1970, 20, 637 (in Russian).Google Scholar
  65. Kornhuber, H. H. Neural control of input into long term memory: Limbic system and amnestic syndrome in man. In H. P. Zippel (Ed.), Memory and transfer of information. New York: Plenum Press, 1973, p.1.CrossRefGoogle Scholar
  66. Kotlyar, B. I., Timofeeva, N. O., and Zubova, O. B. Participation of the hippocampal circuit structures in the orienting reflex. Zhurnal Vysshei Nervnoi DeyateVnosti, 1972, 22(3), 589 (in Russian).Google Scholar
  67. Kultas, K. N., Smolikhina, T. I., Brazhnik, E. S., and Vinogradova, O. S. The effect of septal afferents lesion upon the acetylcholinesterase activity in the short-axone neurons of the hippocampus. Doklady Academii Nauk, 1974, 216(2), 462 (in Russian).Google Scholar
  68. Leontovich, T. N. Towards the problem of emotions. Uspekhi Sovremennoi Biologii, 1968, 65(1), 35 (in Russian).Google Scholar
  69. Lidsky, A., and Slotnick, B. M. Effects of posttrial limbic stimulation on retention of a one-trial passive-avoidance response. Journal of Comparative Physiology and Psychology, 1971, 76, 337.CrossRefGoogle Scholar
  70. Livanov, M. N.Spatial synchronization of the processes in the brain. Moscow: “Nauka,” 1972 (in Russian).Google Scholar
  71. Lømo, T. Potentiation of monosynaptic EPSPs in the perforant path-dentate granule cells synapse. Experimental Brain Research, 1971, 12, 46.Google Scholar
  72. Lorente de Nó, R. Studies on the structure of cerebral cortex. I. The area entorhinalis. Journal für Psychologie und Neurologie (Leipzig), 1933, 45, 381.Google Scholar
  73. Lorente de NNó, R. Studies on the structure of cerebral cortex. II. Continuation of the study of the ammonic system. Journal für Psychologie und Neurologie (Leipzig), 1934, 46, 113.Google Scholar
  74. Lundberg, P. O. Cortico-hypothalamic connections in the rabbit: An experimental neuro-anatomical study. Acta Physiologica Scandinavica, 1960, 49, Suppl. 171.CrossRefGoogle Scholar
  75. Luria, A. R. Memory disturbances in local brain lesions. Neuropsychology, 1971, 9, 367.CrossRefGoogle Scholar
  76. Lynch, G., Stanfield, B., Parks, T., and Cotman, C. W. Evidence for selective post-lesion axonal growth in the dentate gyrus of the rat. Brain Research, 1974, 69, 1.PubMedCrossRefGoogle Scholar
  77. MacLean, P. D., and Creswell, G. Anatomical connections of visual system with limbic cortex of monkey. Journal o] Comparative Neurology, 1970, 138, 265.CrossRefGoogle Scholar
  78. Marr, D. Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society, London, 1971, 841, 23.CrossRefGoogle Scholar
  79. McGaugh, J. L. Impairment and facilitation of memory consolidation. Activitas Nervosa Superior, 1972, 14, 64.PubMedGoogle Scholar
  80. McLardy, T. Neurosyncytial aspects of the hippocampal mossy fiber system. Confinia Neurologica, 1960, 20, 1.CrossRefGoogle Scholar
  81. Milner, B. Memory and the medial temporal regions of the brain. In K. H. Pribram and E. Broadbent (Eds.), Biology of memory. New York: Academic Press, 1970, p. 29.Google Scholar
  82. Milner, P.Physiological psychology. New York: Holt, Rinehart and Winston, 1970.Google Scholar
  83. Monnier, M., and Tissot, R. Action de la stimulation systématique de l’hippocampe sur le comportement et sur l’activité électrique cérébrale du Lapin. In Physiologie de l’hippocampe. Paris: Montpellier, 1962, p. 474.Google Scholar
  84. Mosko, S., Lynch, G., and Cotman, C. W. The distribution of septal projections to the hippocampus of the rat. Journal of Comparative Neurology, 1973, 152, 163.PubMedCrossRefGoogle Scholar
  85. Nafstad, P. H. J. An electron microscope study on the termination of the perforant path fibers in the hippocampus and the fascia dentata. Zeitschrift für Zellforschung, 1967, 76, 532.CrossRefGoogle Scholar
  86. Nauta, W. J. H. An experimental study of the fornix system in the rat. Journal of Comparative Neurology, 1956, 104, 247.PubMedCrossRefGoogle Scholar
  87. Nauta, W. J. H. Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain, 1958, 81, 319.PubMedCrossRefGoogle Scholar
  88. Nauta, W. J. H. Neural associations of the frontal cortex. Acta Neuro biologica Experimentalis, 1972, 32, 125.Google Scholar
  89. Nikitina, G. M.Development of the integral activity of the organizm in the ontogeny. Moscow: “Medicine,” 1970 (in Russian).Google Scholar
  90. Nikitina, G. M., Boravova, A. I., and Popov, V. V. Participation of different afferent inputs in organization of the hippocampal EEG—Correlate of the orienting reflex in early ontogenezis. In Proceedings of the Brain Research Institute. Moscow, 1972, p. 86 (in Russian).Google Scholar
  91. Olds, J. The behavior of hippocampal neurons during conditioning experiments. In R. E. Wallen et al. (Eds.), The neural control of behavior. New York: Academic Press, 1970, p. 257.Google Scholar
  92. Pagni, C. A., and Marossero, F. Some observations on the human rhinencephalon; a stereo-electroencephalographic study. Electroencephalography and Clinical Neurophysiology, 1965, 18, 260.PubMedCrossRefGoogle Scholar
  93. Pandya, D. N., and Vignolo, L. A. Interhemispheric projections of the parietal lobe in the rhesus monkey. Brain Research, 1969, 15, 49.PubMedCrossRefGoogle Scholar
  94. Papez, J. W. A proposed mechanism of emotion. Archives of Neurology and Psychiatry (Chicago), 1937, 38, 725.Google Scholar
  95. Petsche, H., Stumpf, C., and Gogolak, G. The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. 1. The control of hippocampus arousal activity by the septum cells. Electroencephalography and Clinical Neurophysiology, 1962, 14, 202.PubMedCrossRefGoogle Scholar
  96. Powell, T. P. S., Guillery, R. W., and Cowan, W. M. A quantitative study of the fornix-mam-millothalamic system. Journal of Anatomy (London), 1957, 91, 419.Google Scholar
  97. Pribram, K. H. Memory and the organization of attention. In D. B. Lindsley and A. A. Lunsdaine (Eds.), Brain functions and learning. 1967, p. 79.Google Scholar
  98. Pribram, K. H. The limbic system, efferent control of neural inhibition and behavior. Progress in Brain Research, Los Angeles, 1967, 27, 318.PubMedCrossRefGoogle Scholar
  99. Radulovacki, M., and Adey, W. R. The hippocampus and the orienting reflex. Experimental Neurology, 1965, 12, 68.PubMedCrossRefGoogle Scholar
  100. Raisman, G. The connections of the septum. Brain, 1966, 89, 317.PubMedCrossRefGoogle Scholar
  101. Raisman, G. A comparison of the mode of termination of the hippocampal and hypothalamic afferents to the septal nuclei as revealed by electron microscopy of degeneration. Experimental Brain Research, 1969, 7, 317.CrossRefGoogle Scholar
  102. Raisman, G., Cowan, W. M., and Powell, T. P. S. The extrinsic afferent, commissural and association fibers of hippocampus. Brain, 1965, 88, 963.CrossRefGoogle Scholar
  103. Raisman, G., Cowan, W. M., and Powell, T. P. S. An experimental analysis of the efferent projection of the hippocampus. Brain, 1966, 89, 83.PubMedCrossRefGoogle Scholar
  104. Rose, J. E. The cell structure of the mammillary body in mammals and in man. Journal of Anatomy (London), 1939, 74, 91.Google Scholar
  105. Routtenberg, A., Zeckmeister, E. B., and Benton, C. Hippocampal activity during memory disruption of passive avoidance by electroconvulsive shock. Life Science, 1970, 9, 909.CrossRefGoogle Scholar
  106. Scheibel, M. E., and Scheibel, A. B. Periodic sensory nonresponsiveness in reticular neurons. Archives Italieneide Biologie, 1965, 103, 300.Google Scholar
  107. Segal, M. Hippocampal unit responses to perforant path stimulation. Experimental Neurology, 1972, 35, 541.PubMedCrossRefGoogle Scholar
  108. Semyonova, T. P., and Vinogradova, O. S. Some peculiarities of neuronal activity in the ventral hippocampus. Zhurnal Vysshei Nervnoi DeyateVnosti, 1970, 20(5), 1031 (in Russian).Google Scholar
  109. Shaban, V. M. The effect of the afferent paths transsection upon the evoked potentials, theta-rhythm and neuronal activity of the hippocampus. Neurophysiology, 1970, 2(2), 439 (in Russian).Google Scholar
  110. Shute, C. C. D., and Lewis, R. P. The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections. Brain, 1967, 90, 497.PubMedCrossRefGoogle Scholar
  111. Sokolov, E. N.Perception and the conditioned reflex. Moscow: Moscow University Press, 1958 (in Russian).Google Scholar
  112. Sokolov, E. N.Mechanisms of memory. Moscow: Moscow University Press, 1968 (in Russian).Google Scholar
  113. Somogyi, G., Tömböl, T., and Kiss, A. Golgi analysis of anterior thalamic nuclei. Acta Morphologica, 1969, 17, 342.Google Scholar
  114. Sotnichenko, T. S. Experimental morphological investigation of the limbic cortex and hippocampus in rodents and Carnivora. Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 1970, 6, 571 (in Russian).Google Scholar
  115. Spencer, W. A., and Kandel, E. R. Hippocampal neuron responses to selective activation of recurrent collaterals of hippocampofugal axons. Experimental Neurology, 1961, 4, 149.CrossRefGoogle Scholar
  116. Sperti, L., Gessi, T., Volta, F., and Sanseverino, E. R. Synaptic organization of commissural projections of the hippocampal region in the guinea pig. II. Dorsal psalterium: Pre-hippocampal and intra-hippocampal relays. Archivio di Scienze Biologiche, 1970, 54, 183.PubMedGoogle Scholar
  117. Stafekhina, V. S. Characteristics of neuronal reactions and their dynamics in the different areas of the rabbit limbic cortex. In Proceedings of the Third Conference on Memory Problems. Puschino-on-Oka, 1974, p. 205 (in Russian).Google Scholar
  118. Stafekhina, V. S., and Vinogradova, O. S. Characteristics of sensory responses in neurons of the limbic (cingulate) cortex of the rabbit. In A. N. Cherkashin and K. N. Kultas (Eds.), The limbic system of the brain. Puschino-on-Oka, 1973, p. 191 (in Russian).Google Scholar
  119. Steward, O., Cotman, C. W., and Lynch, G. S. Re-establishment of electrophysiologically functional entorhinal cortical input to the dentate gyrus deafferented by ipsilateral entorhinal lesions: Innervation by the cotralateral entorhinal cortex. Experimental Brain Research, 1973, 18, 396.CrossRefGoogle Scholar
  120. Stumpf, C. Drug action on the electrical activity of the hippocampus. International Review of Neurobiology, 1965, 8, 77.PubMedCrossRefGoogle Scholar
  121. Tömböl, T., and Petsche, H. The histological organization of the pacemaker for the hippocampal theta rhythm in the rabbit. Brain Research, 1969, 12, 414.PubMedCrossRefGoogle Scholar
  122. Urmancheeva, T. G. Functional characteristics of the hippocampus in monkeys. Zhurnal Vysshei Nervnoi DeyateVnosti, 1972, 22(6), 11234 (in Russian).Google Scholar
  123. Van Hoesen, G. W., Pandya, D. N., and Butters, N. Cortical afferents to the entorhinal cortex of the rhesus monkey. Science, 1972, 175, 1471.PubMedCrossRefGoogle Scholar
  124. Vinogradova, O. S.Orienting reflex and its neurophysiological mechanisms. Moscow, 1961 (in Russian).Google Scholar
  125. Vinogradova, O. S. Dynamic classification of the hippocampal neurons. Zhurnal Vysshei Nervnoi DeyateVnosti, 1965, 15(4), 500.Google Scholar
  126. Vinogradova, O. S. Hippocampus and the orienting reflex. In E. N. Sokolov and O. S. Vinogradova (Eds.), Neuronal mechanisms of the orienting reflex. Moscow: Moscow University Press, 1970, p. 183 (in Russian).Google Scholar
  127. Vinogradova, O. S. Some suggestions on neuronal mechanisms of memory and on the role of the limbic system in registration of information. Zhurnal Vysshei Nervnoi DeyateVnosti, 1973, 48, 305 (in Russian).Google Scholar
  128. Vinogradova, O. S., and Dudaeva, K. I. Functional characteristics of the hippocampal field CA1. Zhurnal Vysshei Nervnoi DeyateVnosti, 1971, 21, 577 (in Russian).Google Scholar
  129. Vinogradova, O. S., and Dudaeva, K. I. On the comparator function of the hippocampus. Doklady Academii Nauk, 1972, 202, 241 (in Russian).Google Scholar
  130. Vinogradova, O. S., and Stafekhina, V. S. Dynamics of neuronal reactions in the limbic cortex. Zhurnal Vysshei Nervnoi DeyateVnosti, 1974, 24, 337 (in Russian).Google Scholar
  131. Vinogradova, O. S., and Zolotukhina, L. I. Sensory characteristics of the neurons in the medial and lateral septal nuclei. Zhurnal Vysshei Nervnoi DeyateVnosti, 1972, 22(6), 1260 (in Russian).Google Scholar
  132. Vinogradova, O. S., and Zolotukhina, L. I. The effect of electrical stimulation of the hippocampus and reticular formation upon the activity of neurons in the medial and lateral septal nuclei. In A. N. Cherkashin and K. N. Kultas (Eds.), Limbic system of the brain. Puschino-on-Oka, 1973, p. 161 (in Russian).Google Scholar
  133. Vinogradova, O. S., Svyatukhina, N. V., and Stafekhina, V. S. On a certain type of reactions formation in the limbic neurons. Zhurnal Vysshei Nervnoi DeyateVnosti, 1971, 21(5), 1023 (in Russian).Google Scholar
  134. Voronin, L. G., and Semyonova, T. P. Development of the motor chain conditioned reflexes in white rats after lesions of the hippocampus. Zhurnal Vysshei Nervnoi DeyateVnosti, 1968, 18(4), 574 (in Russian).Google Scholar
  135. Warburton, D. M. Effects of atropine sulfate on single alternation in hippocampectomized rats. Physiology and Behavior, 1969, 4, 641.CrossRefGoogle Scholar
  136. Zimmer, J. Extended commissural and ipsilateral projections in postnatally deentorhinated hippocampus and fascia dentata demonstrated in rats by silver impregnation. Brain Research, 1973, 64, 293.PubMedCrossRefGoogle Scholar
  137. Zolotukhina, L. I., and Vinogradova, O. S. Characteristics of neuronal reactions to sensory stimuli in the n. accumbens septi. Zhurnal Vysshei Nervnoi DeyateVnosti, 1973a, 23(3), 615 (in Russian).Google Scholar
  138. Zolotukhina, L. I., and Vinogradova, O. S. Characteristics of neuronal reactions to sensory stimuli in the nucleus septo-fimbrialis. Zhurnal Vysshei Nervnoi DeyateVnosti, 1973b, 23(1), 132 (in Russian).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • O. S. Vinogradova
    • 1
  1. 1.Department of Memory Problems, Institute of BiophysicsThe U.S.S.R. Academy of Sciences Biological CenterPuschino-on-OkaU.S.S.R.

Personalised recommendations