Advertisement

Postnatal Development of the Hippocampal Dentate Gyrus Under Normal and Experimental Conditions

  • Joseph Altman
  • Shirley Bayer

Abstract

Recent studies using [3H] thymidine autoradiography produced convincing evidence that in the development of a particular brain region the small, short-axoned cells come into existence after the larger long-axoned cells. Indeed, in an altricial rodent, the rat, the granular nerve cells of the olfactory bulb, hippocampus, cerebellum, and cochlear nucleus are formed exclusively or predominantly after birth (Altman and Das, 1965a). There are indications that these short-axoned neurons (microneurons) arise from late-forming secondary germinal matrices (like the subependymal layer of the forebrain ventricles and the external germinal layer of the cerebellar cortex), in contrast to the long-axoned neurons (macroneurons) which originate from the periventricular primary matrix, the neuroepithelium (Altman, 1969). We do not as yet have an adequate explanation of the delayed formation of microneurons but the importance of these elements in the maturation of brain functions is indicated by behavioral studies. For instance, interference with the postnatal acquisition of cerebellar granule cells by experimental means produces behavioral deficits comparable to those seen after decerebellation (Wallace and Altman, 1969a,b; Altman et al., 1971; Brunner and Altman, 1973).

Keywords

Granule Cell Dentate Gyrus Molecular Layer Cerebellar Cortex Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J. Autoradiographic Investigation Of Cell Proliferation In The Brains Of Rats And Cats. Anatomical Record, 1963, 145, 573–591.PubMedCrossRefGoogle Scholar
  2. Altman, J. Autoradiographic And Histological Studies Of Postnatal Neurogenesis. II. A Longitudinal Investigation Of The Kinetics, Migration And Transformation Of Cells Incorporating Tritiated Thymidine In Infant Rats, With Special Reference To Postnatal Neurogenesis In Some Brain Regions. Journal Of Comparative Neurology, 1966, 128, 431–474.CrossRefGoogle Scholar
  3. Altman, J. Autoradiographic And Histological Studies Of Postnatal Neurogenesis. IV. Cell Proliferation And Migration In The Anterior Forebrain, With Special Reference To Persisting Neurogenesis In The Olfactory Bulb. Journal Of Comparative Neurology, 1969, 137, 433–458.Google Scholar
  4. Altman, J. Postnatal Development Of The Cerebellar Cortex In The Rat. I. The External Germinal Layer And The Transitional Molecular Layer. Journal Of Comparative Neurology, 1972A, 145, 353–398.CrossRefGoogle Scholar
  5. Altman, J. Postnatal Development Of The Cerebellar Cortex In The Rat. Ii. Phases In The Maturation Of Pur-Kinje Cells And Of The Molecular Layer. Journal Of Comparative Neurology, 19726, 145, 399–464.Google Scholar
  6. Altman, J. Effects Of Interference With Cerebellar Maturation On The Development Of Locomotion: An Experimental Model Of Neurobehavioral Retardation. In N. Buchwald (Ed.), Brain mechanisms in mental retardation. New York: Academic Press, 1975, pp. 41–91.Google Scholar
  7. Altman, J., And Anderson, W. J. Irradiation Of The Cerebellum In Infant Rats With Low-Level X-Ray: Histological And Cytological Effects During Infancy And Adulthood. Experimental Neurology, 1971, 30, 492–509.PubMedCrossRefGoogle Scholar
  8. Altman, J., And Anderson, W. J. Experimental Reorganization Of The Cerebellar Cortex. I. Morphological Effects Of Elimination Of All Microneurons With Prolonged X-Irradiation Started At Birth. Journal Of Comparative Neurology, 1972, 146, 355–406.Google Scholar
  9. Altman, J., And Das, G. D. Post-Natal Origin Of Microneurones In The Rat Brain. Nature (London), 1965a, 207, 953–956.CrossRefGoogle Scholar
  10. Altman, J., And Das, G. D. Autoradiographic And Histological Evidence Of Postnatal Hippocampal Neurogenesis In Rats. Journal Of Comparative Neurology, 19656, 124, 319–335.Google Scholar
  11. Altman, J., And Das, G. D. Autoradiographic And Histological Studies Of Postnatal Neurogenesis. I. A Longitudinal Investigation Of The Kinetics, Migration And Transformation Of Cells Incorporating Tritiated Thymidine In Neonate Rats, With Special Reference To Postnatal Neurogenesis In Some Brain Regions. Journal Of Comparative Neurology, 1966, 126, 337–390.PubMedCrossRefGoogle Scholar
  12. Altman, J., And Das, G. D. Postnatal Neurogenesis In The Guinea-Pig. Nature (London) 1967, 214, 1098–1101.CrossRefGoogle Scholar
  13. Altman, J., And Das, G. D. Postnatal Changes In The Concentration And Distribution Of Cholinesterase In The Cerebellar Cortex Of Rats. Experimental Neurology, 1970, 28, 11–34.PubMedCrossRefGoogle Scholar
  14. Altman, J., And Nicholson, J. L. Cell Pyknosis In The Cerebellar Cortex Of Infant Rats Following Low-Level X-Irradiation. Radiation Research, 1971, 46, 476–489.PubMedCrossRefGoogle Scholar
  15. Altman, J., Anderson, W. J., And Wright, K. A. Differential Radiosensitivity Of Stationary And Migratory Primitive Cells In The Brains Of Infant Rats. Experimental Neurology, 1968A, 22, 52–74.Google Scholar
  16. Altman, J., Anderson, W. J., And Wright, K. A. Early Effects Of X-Irradiation Of The Cerebellum In Infant Rats: Decimation And Reconstitution Of The External Granular Layer. Experimental Neurology, 1969, 24, 196–216.Google Scholar
  17. Altman, J., Anderson, W. J., And Strop, M. Retardation Of Cerebellar And Motor Development By Focal X-Irradiation During Infancy. Physiology And Behavior, 1971, 7, 143–150.PubMedCrossRefGoogle Scholar
  18. Angevine, J. B. Time Of Neuron Origin In The Hippocampal Region. Experimental Neurology, Supplement, 1965, 2, 1–70.Google Scholar
  19. Bayer, S. A., And Altman, J. Hippocampal Development In The Rat. Cytogenesis And Morphogenesis Examined With Autoradiography And Low-Level X-Irradiation. Journal Of Comparative Neurology, 1974, 158, 55–80.PubMedCrossRefGoogle Scholar
  20. Bayer, S. A., And Altman, J. Radiation-Induced Interference With Postnatal Hippocampal Cytogenesis In Rats And Its Long-Term Effects On The Acquisition Of Neurons And Glia. Journal Of Comparative Neurology, 1975, In Press.Google Scholar
  21. Bayer, S. A., Brunner, R. L., Hine, R., And Altman, J. Behavioural Effects Of Interference With The Postnatal Acquisition Of Hippocampal Granule Cells. Nature New Biology, 1973, 242, 222–224.PubMedGoogle Scholar
  22. Bensted, J. P. M., Dobbing, J., Morgan, R. S., Reid, R. T. W., And Wright, G. P. Neuroglial Development And Myelination In The Spinal Cord Of The Chick Embryo. Journal Of Embryology And Experimental Morphology, 1957, 5, 428–437.Google Scholar
  23. Brunner, R. L., And Altman, J. Locomotor Deficits In Adult Rats With Moderate To Massive Retardation Of Cerebellar Development During Infancy. Behavioral Biology, 1973, 9, 169–188.PubMedCrossRefGoogle Scholar
  24. Brunner, R. L., And Altman, J. The Effects Of Interference With The Maturation Of The Cerebellum And Hippocampus On The Development Of Adult Behavior. In D. G. Stein Et Al. (Eds.), Recovery of function in the central nervous system. New York: Academic Press, 1974, pp. 129–148.Google Scholar
  25. Cotman, C. W., Matthews, D. A., Taylor, D., And Lynch, G. Synaptic Rearrangement In The Dentate Gyrus: Histochemical Evidence Of Adjustments After Lesions In Immature And Adult Rats. Proceedings Of The National Academy Of Sciences U. S. A. 1973, 70, 3473–3477.Google Scholar
  26. Crain, B., Cotman, C., Taylor, D., And Lynch, G. A Quantitative Electron Microscopic Study Of Syn-Aptogenesis In The Dentate Gyrus Of The Rat. Brain Research, 1973, 63, 195–204.Google Scholar
  27. Crawford, I. L., And Connor, J. D., Zinc In Maturing Rat Brain: Hippocampal Concentration And Localization. Journal Of Neurochemistry, 1972, 19, 1451–1458.PubMedCrossRefGoogle Scholar
  28. Das, G. D. Experimental Studies On The Postnatal Development Of The Brain. I. Cytogenesis And Morphogenesis Of The Accessory Fascia Dentata Following Hippocampal Lesions. Brain Research, 1971, 28, 263–282.PubMedCrossRefGoogle Scholar
  29. Das, G. D., And Kreutzberg, G. W. Postnatal Differentiation Of The Granule Cells In The Hippocampus And Cerebellum: A Histochemical Study. Histochemie, 1967, 10, 246–260.Google Scholar
  30. Derobertis, E., Gerschenfeld, H., And Wald, F. Cellular Mechanisms Of Myelination In The Central Nervous System. Journal Of Biophysical And Biochemical Cytology, 1958, 4, 651–658.CrossRefGoogle Scholar
  31. Fish, I., And Winick, M. Effect Of Malnutrition On Regional Growth Of The Developing Rat Brain. Experimental Neurology, 1969, 25, 534–540.PubMedCrossRefGoogle Scholar
  32. Godina, G., And Barasa, A. Morfogenesi Istogenesi Della Formazione Ammonica. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie, 1964, 63, 327–355.PubMedCrossRefGoogle Scholar
  33. Haggbloom, S. J., Brunner, R. L., And Bayer, S. A. Effects Of Hippocampal Granule Cell Agenesis On Acquisition Of Escape From Fear And One-Way Active-Avoidance Responses. Journal Of Comparative And Physiological Psychology, 1974, 86, 447–457.PubMedCrossRefGoogle Scholar
  34. Hine, R. J., And Das, G. D. Neuroembryogenesis In The Hippocampal Formation Of The Rat: An Autoradiographic Study. Zeitschrift Fur Anatomie Und Entwicklungsgeschichte, 1974, 144, 173–186.Google Scholar
  35. Jacobson, S. Sequence Of Myelinization In The Brain Of The Albino Rat. A. Cerebral Cortex, Thalamus And Related Structures. Journal Of Comparative Neurology, 1963, 121, 5–29.PubMedCrossRefGoogle Scholar
  36. Lewis, P. R., And Shute, C. C. D. The Cholinergic Limbic System: Projections To Hippocampal Formation, Medial Cortex, Nuclei Of Ascending Cholinergic Reticular System, And The Subfornical Organ And The Supra-Optic Crest. Brain, 1967, 90, 521–540.PubMedCrossRefGoogle Scholar
  37. Lynch, G. S., Mosko, S., Parks, T., And Cotman, C. W. Relocation And Hyperdevelopment Of The Dentate Gyrus Commissural System After Entorhinal Lesions In Immature Rats. Brain Research, 1973A, 50, 174–178.Google Scholar
  38. Lynch, G., Stanfield, B., And Cotman, C. W. Developmental Differences In Post-Lesion Axonal Growth In The Hippocampus. Brain Research, 19736, 59, 155–168.Google Scholar
  39. Matthews, D. A., Nadler, J. V., Lynch, G. S., And Cotman, C. W. Development Of Cholinergic Innervation In The Hippocampal Formation Of The Rat. I. Histochemical Demonstration Of Acetylcholinesterase Activity. Developmental Biology, 1974, 36, 130–141.PubMedCrossRefGoogle Scholar
  40. Mellgren, S. I. Distribution Of Acetylcholinesterase In The Hippocampal Region Of The Rat During Postnatal Development. Zeitschrift Flir Zellforschung Und Mikroskopische Anatomie, 1973, 141, 375–400.CrossRefGoogle Scholar
  41. Mellgren, S. I., And Srebro, B. Changes In Acetylcholinesterase And Distribution Of Degenerating Fibres In The Hippocampal Region After Septal Lesions In The Rat. Brain Research, 1973, 52, 19–36.PubMedCrossRefGoogle Scholar
  42. Messier, B., And Leblond, C. P. Preparation Of Coated Radioautographs By Dipping Sections In Fluid Emulsion. Proceedings Of The Society For Experimental Biology And Medicine, 1957, 96, 7–10.PubMedGoogle Scholar
  43. Meyer, U., Ritter, J., And Wenk, H. Zur Chemodifferenzierung Der Hippocampusformation In Der Postnatalen Entwicklung Der Albinoratte. I. Oxydoreductasen. Journal Fuer Hirnforschung, 1972, 13, 235–253.Google Scholar
  44. Nadler, J. W., Matthews, D. A., Cotman, C. W., And Lynch, G. S. Development Of Cholinergic Innervation In The Hippocampal Formation Of The Rat. II. Quantitative Changes In Choline Acetyl-Transferase And Acetylcholinesterase Activities. Developmental Biology, 1974, 36, 142–154.Google Scholar
  45. Purpura, D. P., And Pappas, G. D. Structural Characteristics Of Neurons In The Feline Hippocampus During Postnatal Ontogenesis. Experimental Neurology, 1968, 22, 379–393.PubMedCrossRefGoogle Scholar
  46. Ritter, J., Meyer, U., And Wenk, H. Zur Chemodifferenzierung Der Hippocampusformation In Der Postnatalen Entwicklung Der Albinoratte. II. Transmitterenzyme. Journal Fuer Hirnforschung, 1972, 13, 255–278.Google Scholar
  47. Roback, H. N., And Scherer, H. J. Ueber Die Feinere Morphologie Der Frühkindlichen Hirnes Unter Besonderer Berücksichtigung Der Gliaentwicklung. Virchows Archiv, Abteilung A, Pathologische Anatomie, 1935, 294, 365–413.Google Scholar
  48. Schwartz, I. R., Pappas, G. D., And Purpura, D. P. Fine Structure Of Neurons And Synapses In The Feline Hippocampus During Postnatal Ontogenesis. Experimental Neurology, 1968, 22, 394–407.PubMedCrossRefGoogle Scholar
  49. Shimada, M. Oxidative Enzymes In Maturing Hippocampus And Cerebellum Of Hamsters. Experientia, 1970, 26, 181–182.PubMedCrossRefGoogle Scholar
  50. Shute, C. C. D., And Lewis, P. R. Electron Microscopy Of Cholinergic Terminals And Acetyl-Choninesterase-Containing Neurones In The Hippocampal Formation Of The Rat. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie, 1966, 69, 334–343.PubMedCrossRefGoogle Scholar
  51. Storm-Mathisen, J., And Blackstad, T. W. Cholinesterase In The Hippocampal Region. Acta Anatomica, 1964, 56, 216–253.CrossRefGoogle Scholar
  52. Taylor, J. H., Woods, P. S., And Hughes, W. L. The Organization And Duplication Of Chromosomes As Revealed By Autoradiographic Studies Using Trititium-Labeled Thymidine. Proceedings Of The National Academy Of Sciences, U. S. A., 1957, 43, 122–128.CrossRefGoogle Scholar
  53. Wallace, R. B., And Altman, J. Behavioral Effects Of Neonatal Irradiation Of The Cerebellum. I. Qualitative Observations In Infant And Adolescent Rats. Developmental Psychobiology, 1969A, 2, 257–265.Google Scholar
  54. Wallace, R. B., And Altman, J. Behavioral Effects Of Neonatal Irradiation Of The Cerebellum. II. Quantitative Studies In Young-Adult And Adult Rats. Developmental Psychobiology, 1969B, 2, 266–272.Google Scholar
  55. Wender, M., And Kozik, M. Zur Chemoarchitektonik Des Ammonshorngebietes Während Der Entwicklung Des Mausegehirns. Acta Histochemica (Jena), 1968, 31, 166–181.Google Scholar
  56. Wender, M., And Kozik, M. Studies Of The Histoenzymatic Architecture Of The Ammon’s Horn Region In The Developing Rabbit Brain. Acta Anatomica (Basel), 1970, 75, 248–262.Google Scholar
  57. Yakovlev, P. I., And Lecours, A. -R. The Myelogenetic Cycles Of Regional Maturation Of The Brain. In A. Minkowski (Ed.), Regional development of the brain in early life. Oxford: Blackwell, 1967, pp. 3–65.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Joseph Altman
    • 1
  • Shirley Bayer
    • 1
  1. 1.Laboratory of Developmental Neurobiology, Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations