Advertisement

Cleavage of Phosphoester Bonds and some other Reactions of Phosphate Groups of Nucleic Acids and their Components

  • N. K. Kochetkov
  • E. I. Budovskii

Abstract

Reactions leading to rupture of phosphoester (in particular, phosphodiester) bonds occupy a special place among chemical conversions c the nucleic acids and their components. They are the basis of analytical methods used to determine the composition and structure of the nucleic acids. Although nowadays chemical methods of hydrolysis of phosphoester bonds have largely been replaced by enzymic methods, because the cleavage can then take place under milder conditions and in a more specific manner, nevertheless the possibilities afforded by chemical methods of hydrolysis are still far from exhausted.

Keywords

Acid Hydrolysis Phosphate Group Alkaline Hydrolysis Phosphorus Atom Phosphodiester Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    A. M. Michelson, The Chemistry of Nucleosides and Nucleotides, Academic Press, London - New York (1966).Google Scholar
  2. 2.
    J. R. Cox and O. B. Ramsay, Chem. Rev., 64:317 (1964).CrossRefGoogle Scholar
  3. 3.
    T. C. Bruice and S. J. Benkovic, in: Bioorganic Mechanisms, Vol. 2, Part 1, W. A. Benjamin, New York - Amsterdam (1966).Google Scholar
  4. 4.
    J. Baddiley, J. G. Buchanan, and R. Letters, J. Chem. Soc., 1000 (1958).Google Scholar
  5. 5.
    A. Takami, M. Imadzawa, M. Irie, and T. Ukita, J. Pharm. Soc. Japan, 85:658 (1965).Google Scholar
  6. 6.
    C. A. Bunton, D. R. Lewellyn, K. G. Oldham, and C. A. Vernon, J. Chem. Soc., 3574 (1958).Google Scholar
  7. 7.
    P. Fleury, Compt. Rend. Acad. Sci. (Paris), 221:4161 (1945).Google Scholar
  8. 8.
    A. Desjobert, Bull. Soc. Chim. France, 14:809 (1947).Google Scholar
  9. 9.
    D. H. Hayes, J. Chem. Soc., 1184 (1960).Google Scholar
  10. 10.
    A. M. Michelson and A. R. Todd, J. Chem. Soc., 2476 (1949).Google Scholar
  11. 11.
    J. E. Bacher and F. W. Allen, J. Biol. Chem., 182:701 (1950).Google Scholar
  12. 12.
    H. Trapmann and M. Devani, Hoppe-Seyler’s Z. Physiol. Chem., 340:81 (1965).CrossRefGoogle Scholar
  13. 13.
    J. E. Bacher and F. W. Allen, J. Biol. Chem., 188:59 (1951).Google Scholar
  14. 14.
    G. L. Eichhorn and J. J. Butzow, Biopolymers, 3:79 (1965).CrossRefGoogle Scholar
  15. 15.
    K. Dimroth, H. Witzel, W. Hülsen, and H. Mirbach, Ann., 620:94 (1959).Google Scholar
  16. 16.
    P. A. Levene and L. W. Bass, Nucleic Acids (American Chemical Society Monograph Series), New York (1931).Google Scholar
  17. 17.
    P. A. Levene and W. A. Jacobs, Ber., 43:3150 (1910).Google Scholar
  18. 18.
    H. S. Loring, G. Ordway, and J. G. Pierce, J. Biol. Chem., 176:1123 (1948).Google Scholar
  19. 19.
    H. Bredereck, A. Martini, and F. Richter, Ber., 74:694 (1941).Google Scholar
  20. 20.
    R. M. Bock, in: Methods in Enzymology, Vol. 12, Part A, L. Grossman and K. Moldave (editors), Academic Press, New York - London (1967), p. 224.Google Scholar
  21. 21.
    P. A. Levene, J. Biol. Chem., 39:77 (1919).Google Scholar
  22. 22.
    H. S. Loring and J. M. Ploeser, J. Biol. Chem., 178:439 (1949).Google Scholar
  23. 23.
    K. Dimroth, R. Hamm, L. Jaenicke, and K. Holle, Patent FGR 820328, C. A., 48:2091e (1954).Google Scholar
  24. 24.
    E. Bamann, H. Trapmann, and F. Fischler, Biochem. Z., 325:89 (1954).Google Scholar
  25. 25.
    R. Markham, in: Methods in Enzymology, Vol. 3, S. P. Colowick and N. O. Kaplan (editors), Academic Press, New York - London (1957), p. 805.CrossRefGoogle Scholar
  26. 26.
    D. Shugar, in: Methods in Enzymology, Vol. 12, Part A, L. Grossman and K. Moldave (editors), Academic Press, New York - London (1967), p. 131.Google Scholar
  27. 27.
    V. S. Shapot, The Nucleases [in Russian], Meditsina (1968).Google Scholar
  28. 28.
    R. Markham and J. D. Smith, Biochem. J., 52:552 (1952).Google Scholar
  29. 29.
    W. E. Conn, J. Am. Chem. Soc., 72:1471 (1950).CrossRefGoogle Scholar
  30. 30.
    H. I. Abrash, C.-C. S. Cheung, and J. C. Davis, Biochemistry, 6:1298 (1967).CrossRefGoogle Scholar
  31. 31.
    G. R. Barker, D. M. Montagne, R. J. Moss, and M. A. Parsons, J. Chem. Soc., 3786 (1957).Google Scholar
  32. 32.
    G. M. Tener and H. G. Khorana, J. Am. Chem. Soc., 77:5349 (1955).CrossRefGoogle Scholar
  33. 33.
    T. V. Venkstern, L. Li, A. I. Krutilina, V. D. Aksel’rod, A. D. Mirzabekov, and A. A. Baev, Molekul. Biol., 2:597 (1968).Google Scholar
  34. 34.
    A. M. Michelson, J. Chem. Soc., 1371 (1959).Google Scholar
  35. 35.
    C. A. Dekker and H. G. Khorana, J. Am. Chem. Soc., 76:3522 (1954).CrossRefGoogle Scholar
  36. 36.
    H. Witzel, in: Progress in Nucleic Acid Research, Vol. 2, J. N. Davidson and W. E. Conn (editors), Academic Press, New York - London (1963), p. 227Google Scholar
  37. 37.
    C.-C. S. Cheung and H. I. Abrash, Biochemistry, 3:1883 (1964).CrossRefGoogle Scholar
  38. 38.
    T. W. Rall and E. W. Sutherland, in: Methods inEnzymology, Vol. 5, S. P. Colowick and N. O. Kaplan (editors), Academic Press, New York - London (1962), p. 337.Google Scholar
  39. 39.
    R. K. Borden and M. Smith, J. Org. Chem., 31:3247 (1966).CrossRefGoogle Scholar
  40. 40.
    M. Smith, G. I. Drummond, and H. G. Khorana, J. Am. Chem. Soc., 83:698 (1961).CrossRefGoogle Scholar
  41. 41.
    H. G. Khorana, G. M. Tener, R. S. Wright, and J. G. Moffatt, J. Am. Chem. Soc., 79:430 (1957).CrossRefGoogle Scholar
  42. 42.
    G. I. Drummond, M. W. Gilgan, E. J. Reiner, and M. Smith, J. Am. Chem., Soc., 86:1627 (1964).CrossRefGoogle Scholar
  43. 43.
    E. W. Sutherland and T. W. Rall, J. Biol. Chem., 232:1077 (1959).Google Scholar
  44. 44.
    D. Lipkin, W. H. Cook, and R. Markham, J. Am. Chem. Soc., 81:6198 (1959).CrossRefGoogle Scholar
  45. 45.
    A. F. Turner and H. G. Khorana, J. Am. Chem. Soc., 81:4651 (1959).CrossRefGoogle Scholar
  46. 46.
    S. J. Thannhauser, Hoppe-Seyler’s Z. Physiol. Chem., 91:329 (1914).CrossRefGoogle Scholar
  47. 47.
    A. Fono, Arkiv Kemi, Mineral Geol., 24A (33):14, 15 (1947).Google Scholar
  48. 48.
    O. Bally and J. Gaume, Bull. Soc. Chim. France, 2: 354 (1935);Google Scholar
  49. 48a.
    O. Bally and J. Gaume, Bull. Soc. Chim. France, 3:1396 (1936).Google Scholar
  50. 49.
    D. M. Brown and A. R. Todd, J. Chem. Soc., 44 (1952).Google Scholar
  51. 50.
    D. M. Brown and A. R. Todd, J. Chem. Soc., 52 (1952).Google Scholar
  52. 51.
    F. Egami, H. Ishimura, and M. Shimomura, Hoppe-Seyler’s Z. Physiol. Chem., 295:349 (1953).CrossRefGoogle Scholar
  53. 52.
    B. G. Lane, Biochemistry, 4:212 (1965).CrossRefGoogle Scholar
  54. 53.
    D. M. Brown and A. R. Todd, in: Nucleic Acids, Vol. 1, E. Chargaff and J. N. Davidson (editors), Academic Press, New York - London (1955), p. 409.Google Scholar
  55. 54.
    A. M. Michelson, The Chemistry of Nucleosides and Nucleotides, Academic Press, London - New York (1963).Google Scholar
  56. 55.
    D. M. Brown, in: Comprehensive Biochemistry, Vol. 8, Part 2, M. Florkin and E. H. Stotz (editors), Elsevier. Amsterdam (1963), pp. 244–248.Google Scholar
  57. 56.
    D. M. Brown and A. R. Todd, J. Chem. Soc., 2040 (1953).Google Scholar
  58. 57.
    D. Lipkin, P. T. Talbert, and M. Cohn, J. Am. Chem. Soc., 76:2871 (1954).CrossRefGoogle Scholar
  59. 58.
    D. M. Brown, D. I. Magrath, A. H. Nelson, and A. R. Todd, Nature, 177:1124 (1956).CrossRefGoogle Scholar
  60. 59.
    R. M. Bock, in: Methods in Enzymology, Vol. 12, Part A, L. Grossman and K. Moldave (editors), Academic Press, New York - London (1967), p. 218.Google Scholar
  61. 60.
    B. G. Lane and G. C. Butler, Canad. J. Biochem. Physiol., 37:573 (1959).CrossRefGoogle Scholar
  62. 61.
    B. G. Lane and F. W. Allen, Canad. J. Biochem. Physiol., 39:721 (1961).CrossRefGoogle Scholar
  63. 62.
    H. Witsel, Ann., 635:185 (1960).Google Scholar
  64. 63.
    H. F. Cavalieri, J. Am. Chem. Soc., 73:4899 (1951).CrossRefGoogle Scholar
  65. 64.
    J. E. Bacher and W. Kauzman, J. Am. Chem. Soc., 74:3779 (1952).CrossRefGoogle Scholar
  66. 65.
    A. A. Hakim, J. Biol. Chem., 225:689 (1957).Google Scholar
  67. 66.
    B. G. Lane and G. C. Butler, Biochim. Biophys. Acta, 39:281 (1959).CrossRefGoogle Scholar
  68. 67.
    J. Eigner, H. Boedtker, and G. Michaels, Biochim. Biophys. Acta, 51:165 (1961).CrossRefGoogle Scholar
  69. 68.
    G. Ginoza, Nature, 181:958 (1958).CrossRefGoogle Scholar
  70. 69.
    H. B. Kaltrieder and J. F. Scott, Biochim. Biophys. Acta, 55:379 (1962).CrossRefGoogle Scholar
  71. 70.
    A. M. Michelson, Acta Biochim. Polon., 6:335 (1959).Google Scholar
  72. 71.
    G. P. Wyatt, in: The Nucleic Acids, Vol. 1, J. N. Davidson and E. Chargaff (editors), Academic Press, New York - London (1955), p. 243.Google Scholar
  73. 72.
    H. S. Loring, in: The Nucleic Acids, Vol. 1, J. N. Davidson and E. Chargaff (editors), Academic Press, New York - London (1955), p. 137.Google Scholar
  74. 73.
    H. S. Loring, P. M. Roll, and J. G. Pierce, J. Biol. Chem., 174:729 (1948).Google Scholar
  75. 74.
    P. Boulanger and J. Montreuli, Bull. Soc Chim. Biol., 33:784, 791 (1951).Google Scholar
  76. 75.
    J. W. Sedat and J. B. Hall, J. Mol. Biol., 12:174 (1965).CrossRefGoogle Scholar
  77. 76.
    D. H. Marriann, V. L. Smicer, M. E. Balis, and G. B. Brown, J. Biol. Chem.; 189:533 (1951).Google Scholar
  78. 77.
    J. N. Davidson and R. M. S. Smellie, Biochem. J., 52:594 (1952).Google Scholar
  79. 78.
    É. I. Budovskii and L. M. Klebanova, Vopr. Med. Khimii, 13:299 (1967).Google Scholar
  80. 79.
    K. Dimroth and W. Matthalus, Angew. Chem., 68:579 (1956).Google Scholar
  81. 80.
    D. Lipkin and P. T. Talbert, Chem. and Ind., 143 (1955).Google Scholar
  82. 81.
    K. Tanaka, J. Biochem. Tokyo, 47:398 (1960).Google Scholar
  83. 82.
    A. Shionogi Co. Ltd., (by K. Tanaka), Japanese Patent 4148 (1962); C. A., 61: 8392d (1964).Google Scholar
  84. 83.
    D. Lipkin and J. S. Dixon, Science, 116:525 (1952).Google Scholar
  85. 84.
    D. Lipkin, J. S. Dixon, and P. T. Talbert, J. Am. Chem. Soc., 83:4772 (1961).CrossRefGoogle Scholar
  86. 85.
    A. S. Jones, D. S. Letham, and M. Stacey, J. Chem. Soc., 2579 (1956).Google Scholar
  87. 86.
    A. S. Jones, D. S. Letham, and M. Stacey, J. Chem. Soc., 2584 (1956).Google Scholar
  88. 87.
    A. S. Jones, M. Stacey, and B. E. Watson, J. Chem. Soc., 2454 (1957).Google Scholar
  89. 88.
    R. B. Merrifield and D. W. Wooley, J. Biol. Chem., 197:521 (1952).Google Scholar
  90. 89.
    H. Witzel, Ann., 620:122 (1959).Google Scholar
  91. 90.
    M. C. Bailly, Compt. Rend. Acad. Sci. (Paris), 208:442 (1939).Google Scholar
  92. 91.
    E. Chargaff, J. Biol. Chem., 145:455 (1942).Google Scholar
  93. 92.
    W. Pollman and W. Schramm, Z. Naturforsch., 16b:673 (1961).Google Scholar
  94. 93.
    W. Szer and D. Shugar, Acta Biochim. Polon., 9:131 (1962).Google Scholar
  95. 94.
    D. M. Brown, D. I. Magrath, A. R. Todd, J. Chem. Soc., 4396 (1955)Google Scholar
  96. 95.
    R. Markham and J. D. Smith, Biochem. J., 49:401 (1951).Google Scholar
  97. 96.
    E. Vischer and E. Chargaff, J. Biol. Chem., 176:715 (1948).Google Scholar
  98. 97.
    W. E. Cohn and R. Markham, Biochem. J., 62:17P (1956).Google Scholar
  99. 98.
    M. Smith, H. G. Rammley, I. H. Goldberg, and H. G. Khorana, J. Am. Chem. Soc., 84:430 (1962).CrossRefGoogle Scholar
  100. 99.
    S. Chládek and J. Smrt, Coll. Czech. Chem. Comm., 29:214 (1964).Google Scholar
  101. 100.
    A. Holý and J. Smrt. Coll. Czech. Chem. Comm., 31:3800 (1966).Google Scholar
  102. 101.
    H. Nishimura, T. Sekiya, and T. Ukita, Biochim. Biophys. Acta, 174:653 (1969).Google Scholar
  103. 102.
    J. J. Butzow and G. I. Eichhorn, Biopolymers, 3:95 (1965).CrossRefGoogle Scholar
  104. 103.
    J. W. Huff, K. S. Sastry, M. P. Gordon, and W. E. C. Wacker, Biochemistry, 3:501 (1964).CrossRefGoogle Scholar
  105. 104.
    W. R. Farkas, Biochim. Biophys. Acta, 155:401 (1968).Google Scholar
  106. 105.
    K. Dimroth and H. Witzel, Ann., 620:109 (1959).Google Scholar
  107. 106.
    K. Dimroth, L. Jaenicke, and I. Vollbrechts-Hausen, Hoppe Seyler’s Z. Physiol. Chem., 289:71 (1952).CrossRefGoogle Scholar
  108. 107.
    L. Jaenicke, K. Dimroth, and D. Jaenicke, Angew. Chem., 64:653 (1952).Google Scholar
  109. 108.
    K. Dimroth and H. Witzel. Angew. Chem., 68:579 (1956).Google Scholar
  110. 109.
    A. Kossel and A. Neumann, Ber., 26:2753 (1893).Google Scholar
  111. 110.
    P. A. Levene and W. A. Jacobs, J. Biol. Chem., 12:411 (1912).Google Scholar
  112. 111.
    S. J. Thannhauser and B. Offenstein, Z. Physiol. Chem., 114:39 (1921).CrossRefGoogle Scholar
  113. 112.
    S. J. Thannhauser and G. G. Blanco, Z. Physiol. Chem., 161:116 (1926).CrossRefGoogle Scholar
  114. 113.
    P. A. Levene, J. Biol. Chem., 126:63 (1938).Google Scholar
  115. 114.
    C. A. Dekker, A. M. Michelson, and A. R. Todd, J. Chem. Soc., 947 (1953).Google Scholar
  116. 115.
    H. S. Shapiro and E. Chargaff, Biochim. Biophys. Acta, 26:596 (1957).CrossRefGoogle Scholar
  117. 116.
    W. E. Cohn and E. Volkin, Biochim. Biophys. Acta, 24:359 (1957).CrossRefGoogle Scholar
  118. 117.
    J. H. Spencer and E. Chargaff, Biochim. Biophys. Acta, 68:18 (1963).CrossRefGoogle Scholar
  119. 118.
    H. S. Shapiro and E. Chargaff, Biochim. Biophys. Acta, 76:1 (1963).CrossRefGoogle Scholar
  120. 119.
    H. S. Shapiro and E. Chargaff, Biochim. Biophys. Acta, 91:262 (1964).Google Scholar
  121. 120.
    H. S. Shapiro and E. Chargaff, Biochim. Biophys. Acta, 23:451 (1957).CrossRefGoogle Scholar
  122. 121.
    M. Smith, J. G. Moffatt, and H. G. Khorana, J. Am. Chem. Soc., 80:2612 (1958).Google Scholar
  123. 122.
    A. M. Michelson, Tetrahedron, 2:333 (1958).CrossRefGoogle Scholar
  124. 123.
    A. M. Michelson, The Chemistry of Nucleosides and Nucleotides. Academic Press, London - New York (1963).Google Scholar
  125. 124.
    H. S. Shapiro, R. Rudner, K. Miura, and E. Chargaff, Nature, 205:1068 (1965).CrossRefGoogle Scholar
  126. 125.
    O. Meyerhof and K. Lohmann, Biochem. Z., 271:98 (1934).Google Scholar
  127. 126.
    A. B. Foster, W. G. Overlend, and M. J. Stacey, J. Chem. Soc., 980, 987 (1951).CrossRefGoogle Scholar
  128. 127.
    P. Fleury, J. Courtois, and A. Desjobert, Bull. Soc. Chim. France, 694 (1948).Google Scholar
  129. 128.
    H. S. Shapiro, in: Methods in Enzymology, Vol. 12, Part A, L. Grossman and K. Moldave (editors), Academic Press, New York - London (1967), p. 205.Google Scholar
  130. 129.
    K. Burton and G. B. Peterson, Biochem. J., 75:17 (1960).Google Scholar
  131. 130.
    K. Burton, Biochem. J., 62:315 (1956).Google Scholar
  132. 131.
    G. B. Peterson, Biochem. J., 87:495 (1963).Google Scholar
  133. 132.
    M. R. Lunt, J.-C. Siebke, and K. Burton, Biochem. J., 92:27 (1964).Google Scholar
  134. 133.
    G. B. Peterson and K. Burton, Biochem. J., 92:666 (1964).Google Scholar
  135. 134.
    K. Burton, in: Methods in Enzymology, Vol. 12, Part A, L. Grossman and K. Moldave (editors), Academic Press, New York - London (1967), p. 222.Google Scholar
  136. 135.
    A. S. Jones, J. R. Tittensor, and R. T. Walker, Nature, 209:298 (1966).Google Scholar
  137. 136.
    H. S. Shapiro and E. Chargaff, Biochim. Biophys. Acta, 26:608 (1957).CrossRefGoogle Scholar
  138. 137.
    H. S. Shapiro and E. Chargaff, Biochim. Biophys. Acta, 39:62, 68 (1960).CrossRefGoogle Scholar
  139. 138.
    R. Rudner, H. S. Shapiro, and E. Chargaff, Biochim. Biophys. Acta, 129:85 (1966).Google Scholar
  140. 139.
    K. Burton, Biochem. J., 74:35P (1960).Google Scholar
  141. 140.
    K. Burton, Biochem. J., 77:547 (1960).Google Scholar
  142. 141.
    K. W. Brammer, A. S. Jones, A. M. Mian, and R. T. Walker, Biochim. Biophys. Acta, 166:732 (1968).Google Scholar
  143. 142.
    A. S. Jones, A. M. Mian, and R. T. Walker, J. Chem. Soc., (C), 2042 (1968).Google Scholar
  144. 143.
    R. H. Symons and B. W. Ellery, Biochim. Biophys. Acta, 145:368 (1967).Google Scholar
  145. 144.
    R. E. Cape and J. H. Spencer, Fed. Proc., 26:565 (1967).Google Scholar
  146. 145.
    B. F. Vanyushin and Ya. I. Bur’yanov, Biokhimiya, 34:546 (1969).Google Scholar
  147. 146.
    C. R. Bayley and A. S. Jones, Trans. Farad. Soc., 55:492 (1959).Google Scholar
  148. 147.
    C. Tamm, H. S. Shapiro, R. Lipshitz, and E. Chargaff, J. Biol. Chem., 203: 673 (1953).Google Scholar
  149. 148.
    M. E. Hodes and E. Chargaff, Biochim. Biophys. Acta, 22:348 (1956).CrossRefGoogle Scholar
  150. 149.
    H. Seidel, Biochim. Biophys. Acta, 138:98 (1967).Google Scholar
  151. 150.
    R. P. Linstead, L. N. Owen, and R. F. Webb, J. Chem. Soc., 1211 (1953).Google Scholar
  152. 151.
    C. R. Bayley, K. W. Brammer, and A. S. Jones, J. Chem. Soc., 1903 (1961).Google Scholar
  153. 152.
    V. Habermann, Biochim. Biophys. Acta, 55:999 (1962).CrossRefGoogle Scholar
  154. 153.
    V. Habermann, Coll. Czech, Chem. Comm., 28:510 (1963).Google Scholar
  155. 154.
    V. Habermann, Biokhimiya, 28:999 (1963).Google Scholar
  156. 155.
    V. Habermann, S. Habermannova, and M. Cernova, Biochim. Biophys. Acta, 76:310 (1963).CrossRefGoogle Scholar
  157. 156.
    E. Chargaff, P. Rüst, A. Temperli, S. Morisava, and A. Danon, Biochim. Biophys. Acta, 76:149 (1963).CrossRefGoogle Scholar
  158. 157.
    E. Chargaff, J. Buchowicz, H. Türler, and H. S. Shapiro, Nature, 206:145 (1965).CrossRefGoogle Scholar
  159. 158.
    H. S. Shapiro, in: Methods in Enzymology, Vol. 12, Part A, L. Grossman and K. Moldave (editors), Academic Press, New York - London (1967), p. 212.Google Scholar
  160. 159.
    A. R. Cashmore and G. B. Peterson, Biochim. Biophys. Acta, 174:591 (1969).Google Scholar
  161. 160.
    G. K. Darby, A. S. Jones, J. K. Tittensor, and R. T. Walker, Nature, 216:793 (1967).CrossRefGoogle Scholar
  162. 161.
    H. S. Shapiro and E. Chargaff, Biochemistry, 5:3012 (1966).CrossRefGoogle Scholar
  163. 162.
    K. Burton and W. T. Hiley, Biochem. J., 98:70 (1966).Google Scholar
  164. 162a.
    K. Burton, N. F. Varney, and P. C. Zamecnik, Biochem. J., 99:29C (1966).Google Scholar
  165. 163.
    D. C. Livingston, Biochim. Biophys. Acta, 87:538 (1964).Google Scholar
  166. 164.
    M. M. Coombs and D. C. Livingston, Biochim. Biophys. Acta, 174:161 (1969).Google Scholar
  167. 165.
    B. F. Vanyushin and Ya. I. Bur’yanov, Biokhimiya, 34:718 (1969).Google Scholar
  168. 166.
    Ya. I. Bur’yanov, B. F. Vanyushin, V. K. Bobrova, and A. N. Belozerskii, Dokl. Akad. Nauk SSSR, 183:707 (1969).Google Scholar
  169. 167.
    N. K. Kochetkov, E. I. Budowsky, and M. F. Turchinsky, Biochem. Biophys. Res. Comm., 19:49 (1965).CrossRefGoogle Scholar
  170. 168.
    N. K. Kochetkov, É. I. Budovskii, L. I. Gus’kova, and M. F. Turchinskii, Molekul. Biol. (in press).Google Scholar
  171. 169.
    W. Seifert and W. Zillig, Hoppe-Seyler’s Z. Physiol. Chem., 348:1017 (1967).CrossRefGoogle Scholar
  172. 170.
    E. I. Budovskii, L. I. Gus’kova, I. Khazai, and M. F. Turchinskii, Khimiya Prirodn. Soedin. (in press).Google Scholar
  173. 171.
    E. I. Budovskii, L. I. Gus’kova, and M. F. Turchinskii, Molekul. Biol. (in press).Google Scholar
  174. 172.
    P. Philippsen, R. Thiebe, W. Wintermeyer, and H. G. Zachau, Biochem. Biophys. Res. Comm., 33:923 (1968).CrossRefGoogle Scholar
  175. 173.
    P. R. Whitfeld and R. Markham, Nature, 171:1151 (1953).CrossRefGoogle Scholar
  176. 174.
    D. M. Brown, M. Fried, and A. R. Todd, Chem. and Ind., 352 (1953).Google Scholar
  177. 175.
    D. M. Brown, M. Fried, and A. R. Todd, J. Chem. Soc., 2206 (1955).Google Scholar
  178. 176.
    P. R. Whitfeld, Biochem. J., 58:390 (1954).Google Scholar
  179. 177.
    S. Hakamori, in: Proceedings of the 8th Symposium on Nucleic Acids, Kyoto, Japan (1959), p. 16.Google Scholar
  180. 178.
    C.-T. Yu and P. C. Zamecnik, Biochim. Biophys. Acta, 45:148 (1960).CrossRefGoogle Scholar
  181. 179.
    M. Ogur and J. D. Small, J. Biol. Chem., 235: PC60 (1960).Google Scholar
  182. 180.
    J. X. Khym and W. E. Cohn, J. Biol. Chem., 236: PC9 (1961).Google Scholar
  183. 181.
    W. E. Cohn and J. X. Khym, in: Acides Ribonucléiques et Polyphosphates. Structure, Synthèse et Fonction, Colloques Internationaux du C. N. R. S., Strasbourg 1961, C. N. R. S., Paris (1962), p. 217.Google Scholar
  184. 182.
    H. C. Neu and L. A. Heppel, J. Biol. Chem., 239:2927 (1964).Google Scholar
  185. 183.
    A. Steinschneider and H. Fraenkel-Conrat, Biochemistry, 5:2735 (1966).CrossRefGoogle Scholar
  186. 184.
    J. X. Khym, Biochemistry, 2:343 (1963).Google Scholar
  187. 185.
    D. M. Brown and A. P. Read, J. Chem. Soc., (C), 5072 (1965).Google Scholar
  188. 186.
    P. R. Whitfeld, Biochim. Biophys. Acta, 108:202 (1965).Google Scholar
  189. 187.
    J. X. Khym and M. Uziel, Biochemistry, 7:423 (1968).CrossRefGoogle Scholar
  190. 188.
    H. L. Weith and P. T. Gilham, J. Am. Chem. Soc., 89:5473 (1967).CrossRefGoogle Scholar
  191. 189.
    M. Tomasz and R. W. Chambers, Biochim. Biophys. Acta, 108:510 (1965).Google Scholar
  192. 190.
    M. Tomasz, Y. Sanno, and R. W. Chambers, Biochemistry, 4:1710 (1965).CrossRefGoogle Scholar
  193. 191.
    C. B. Reese, K. Schofield, R. Shapiro, and A. R. Todd, Proc. Chem. Soc., 290 (1960).Google Scholar
  194. 192.
    A. S. Jones and A. R. Williamson, Chem. and Ind., 1624 (1960).Google Scholar
  195. 193.
    J. P. Vizsolyi and G. M. Tener, Chem. and Ind., 263 (1962).Google Scholar
  196. 194.
    G. P. Moss, C. B. Reese, K. Schofield, and A. R. Todd, J. Chem. Soc., 1149 (1963).Google Scholar
  197. 195.
    J. D. Albright and L. Goldman, J. Am. Chem. Soc., 87:4216 (1965).CrossRefGoogle Scholar
  198. 196.
    T. Galriel, W. Y. Chen, and A. L. Nussbaum, J. Am. Chem. Soc., 90:6833 (1968).CrossRefGoogle Scholar
  199. 197.
    K. E. Pfitzner and J. G. Moffatt, J. Am. Chem. Soc., 87:5661 (1965).CrossRefGoogle Scholar
  200. 198.
    S. Greer and S. Zamenhof, Fed. Proc., 18:238 (1959).Google Scholar
  201. 199.
    J. Eigner, H. Boedtker, and G. Michaelis, Biochim. Biophys. Acta, 51:165 (1961).CrossRefGoogle Scholar
  202. 200.
    A. Ademiec and D. Shugar, Naturwiss., 46:356 (1959).CrossRefGoogle Scholar
  203. 201.
    A. Ademiec and D. Shugar, Acta Biochim. Polon., 6:425 (1959).Google Scholar
  204. 202.
    B. E. Griffin, in: Methods in Enzymology, Vol. 12, Part A, L. Grossman and K. Moldave (editors), Academic Press, New York - London (1967), p. 141.Google Scholar
  205. 203.
    J. A. Haines, C. B. Reese, and A. R. Todd, J. Chem. Soc., 1406 (1964).Google Scholar
  206. 204.
    R. L. Brimacombe, B. E. Griffin, J. A. Haines, W. J. Haslam, and C. B. Reese, Biochemistry, 4:2452 (1965).CrossRefGoogle Scholar
  207. 205.
    W. Szer and D. Shugar, Acta Biochim. Polon., 7:491 (1960).Google Scholar
  208. 206.
    B. E. Griffin and C. B. Reese, Biochim. Biophys. Acta, 68:185 (1963).CrossRefGoogle Scholar
  209. 207.
    T. Ukita, H. Okuyama, and H. Hayatsu, Chem. Pharm. Bull. Tokyo, 11:1400 (1963).Google Scholar
  210. 208.
    B. E. Griffin and P. B. Reese, Tetrahedron Letters, 2925 (1964).Google Scholar
  211. 209.
    H. Holy and K.-H. Schert, Biochim. Biophys. Acta, 138:230 (1967).Google Scholar
  212. 210.
    C. W. Abell, L. A. Rosini, and M. R. Ramseur, Proc. Nat. Acad. Sci. USA, 54:608 (1965).CrossRefGoogle Scholar
  213. 211.
    P. D. Lowely, in: Progress in Nucleic Acid Research and Molecular Biology, Vol. 5, J. N. Davidson and W. E. Cohn (editors), Academic Press, New York -London (1966), p. 89.Google Scholar
  214. 212.
    E. Kriek and P. Emmelot, Biochemistry, 2:733 (1963).CrossRefGoogle Scholar
  215. 213.
    J. T. Lett, G. M. Parkins, and P. Alexanour, Arch. Biochem. Biophys., 97:80 (1962).CrossRefGoogle Scholar
  216. 214.
    R. J. Rutman, E. H. L. Chun, and J. Jones, Biochim. Biophys. Acta, 174:663 (1969).Google Scholar
  217. 215.
    C. C. Price, G. M. Gausher, P. Koneru, R. Shibakawa, J. R. Sowa, and M. Yamaguchi, Biochim. Biophys. Acta, 166:327 (1968).Google Scholar
  218. 216.
    H. G. Khorana, J. Am. Chem. Soc., 81:4652 (1959).Google Scholar
  219. 217.
    M. Smith, J. G. Moffat, and H. G. Khorana, J. Am. Chem. Soc., 80:6204 (1958).CrossRefGoogle Scholar
  220. 218.
    R. K. Ralph, R. J. Young, and H. G. Khorana, J. Am. Chem. Soc., 85:202 (1963).Google Scholar
  221. 219.
    R. K. Ralph, R. J. Young, and H. G. Khorana, J. Am. Chem. Soc., 84:1490 (1962).CrossRefGoogle Scholar
  222. 220.
    N. N. Preobrazhenskii, N. I. Sokolova, Z. A. Shabarova, and M. A. Prokof’ev, Khimiya Prirodn. Soedin., 342 (1965).Google Scholar
  223. 221.
    U. L. RajBhandary, R. J. Young, and H. G. Khorana, J. Biol. Chem., 239: 3875 (1964).Google Scholar
  224. 222.
    P.-C. Chiang, P.-C. Hu, T.-H. Chi, and C.-C. Liang, Sheng Wu Hua Hsueh Wu Wu Li Hsue Pao, 4:574 (1964); C. A., 62:14981g (1965).Google Scholar
  225. 223.
    S. A. Narang, S. K. Dheer, and J. J. Michnewicz, J. Am. Chem. Soc., 90:2702 (1968).CrossRefGoogle Scholar
  226. 224.
    M.-M. Neulart, Biochim. Biophys. Acta, 149:422 (1967).Google Scholar
  227. 225.
    T. Ooka and M.-M. Neulart-Portier, Biochim. Biophys. Acta, 182:542 (1969).Google Scholar
  228. 226.
    R. Cerny, W. E. Mushynski, and J. H. Spencer, Biochim. Biophys. Acta, 169: 439 (1968).Google Scholar
  229. 227.
    R. Salomon and A. M. Kaye, J. Mol. Biol., 43:581 (1969).CrossRefGoogle Scholar
  230. 228.
    D. E. Hoard, R. L. Ratliff, L. Williams, and F. N. Hayes, J. Biol. Chem., 244:5368 (1969).Google Scholar
  231. 229.
    M. Uziel and J. X. Khym, Biochemistry, 8:3254 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Ltd. 1972

Authors and Affiliations

  • N. K. Kochetkov
  • E. I. Budovskii

There are no affiliations available

Personalised recommendations