Advertisement

Reactions of the Carbohydrate Residues of Nucleic Acids

  • N. K. Kochetkov
  • E. I. Budovskii

Abstract

In DNA molecules, all functional groups of carbohydrate residues of the nucleotide units in the middle of the polymer chain are substituted, and only the hydroxyl groups of terminal residues of deoxynucleotides are free. In most cases, natural polydeoxynucleotides and oligodeoxynucleotides (their degradation products) contain a phosphate residue at the 5′-end of the chain (see footnote on page 31). The only free functional group of the carbohydrate residues is thus the hydroxyl group of the 3′-terminal residue of the nucleotide. In the circular DNAs, even this single group is absent. By contrast, in RNA molecules every nucleotide unit in the centre of the polymer chain contains a free hydroxyl group at C2 of the ribose residue, and the 3′-terminal nucleotide of the chain has an unsubstituted 2′,3-cis-glycolgroup. In aminoacyl-tRNA, an amino-acid residue is linked to one of the hydroxyl groups of the 3′-terminal residue of the nucleotide by an ester bond.

Keywords

Vinyl Ether Acetic Anhydride Dimethyl Sulphoxide Periodate Oxidation Phosphodiester Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    N. K. Kochetkov, A. F. Bochkov, B. A. Dmitriev, A. I. Usov, O. S. Chizhov, and V. N. Shibaev, Carbohydrate Chemistry [in Russian], Khimiya (1967), p. 132.Google Scholar
  2. 2.
    A. M. Michelson, The Chemistry of Nucleosides and Nucleotides, Academic Press, London-New York (1963).Google Scholar
  3. 3.
    H. G. Garg, J. Sci. Ind. Res., 25:404 (1966).Google Scholar
  4. 4.
    A. M. Michelson, J. Chem. Soc., 979 (1962).Google Scholar
  5. 5.
    H. Bredereck and A. Martini, Chem. Ber., 80:401 (1947).Google Scholar
  6. 6.
    W. Andersen, D. H. Hayes, A. M. Michelson, and A. R. Todd, J. Chem. Soc., 1882 (1954).Google Scholar
  7. 7.
    D. H. Hayes, A. M. Michelson, and A. R. Todd, J. Chem. Soc., 808 (1955).Google Scholar
  8. 8.
    F. Weygand and W. Sigmund, Chem. Ber., 86:160 (1953).Google Scholar
  9. 9.
    J. J. Fox, I. Wempen, A. Hampton, and I. L. Doerr, J. Am. Chem. Soc., 80:1669 (1958).Google Scholar
  10. 10.
    H. Schaller, G. Weimann, B. Lerch, and H. G. Khorana, J. Am. Chem. Soc., 85:3821 (1963).Google Scholar
  11. 11.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 101:529 (1933).Google Scholar
  12. 12.
    J. J. Fox, D. Van Praag, I. Wempen, I. L. Doerr, L. Cheong, J. E. Knoll, M. L. Eidinoff, A. Bendich, and G. B. Brown, J.Am. Chem. Soc., 81:178 (1959).Google Scholar
  13. 13.
    A. M. Michelson and A. R. Todd, J. Chem. Soc., 816 (1955).Google Scholar
  14. 14.
    R. Beltz and D. W. Visser, J. Am. Chem. Soc., 77:736 (1955).Google Scholar
  15. 15.
    T. Sasaki and Y. Mizuno, Chem. Pharm. Bull., 15:894 (1967).Google Scholar
  16. 16.
    R. Brimacombe, W. Kemper, T. Yaonini, and J. Smrt. Coll. Czech. Chem. Comm., 33:2074 (1968).Google Scholar
  17. 17.
    M. Saneyoshi, Chem. Pharm. Bull., 16:1400 (1968).Google Scholar
  18. 18.
    A. Stuart and H. G. Khorana, J. Am. Chem. Soc., 85:2346 (1963);Google Scholar
  19. 18a.
    A. Stuart and H. G. Khorana, J. Biol. Chem., 239:3885 (1964).Google Scholar
  20. 19.
    Y. Lapidot and H. G. Khorana, J. Am. Chem. Soc., 85:3852 (1963).Google Scholar
  21. 20.
    Y. Lapidot and H. G. Khorana, J. Am. Chem. Soc., 85:3857 (1963).Google Scholar
  22. 21.
    R. Lohrmann and H. G. Khorana, J. Am. Chem. Soc., 86:4188 (1964).Google Scholar
  23. 22.
    B. E. Griffin, M. Jarman, and C. B. Reese, Tetrahedron, 24:639 (1968).Google Scholar
  24. 23.
    G. A. R. Johnston, Tetrahedron, 24:6987 (1968).Google Scholar
  25. 24.
    C. B. Reese and D. R. Trentham, Tetrahedron Letters, 2467 (1965).Google Scholar
  26. 25.
    B. E. Griffin, M. Jarman, C. B. Reese, J. E. Suiston, and D. R. Trentham, Biochemistry, 5:3638 (1966).Google Scholar
  27. 26.
    D. M. Brown, G. D. Fasman, D. I. Magrath, and A. R. Todd, J. Chem. Soc., 1448 (1954).Google Scholar
  28. 27.
    H. P. M. Fromageot, B. E. Griffin, C. B. Reese, and J. E. Suiston, Tetrahedron, 23:2315 (1967).Google Scholar
  29. 28.
    H. P. M. Fromageot, C. B. Reese, and J. E. Suiston, Tetrahedron, 24:3533 (1968).Google Scholar
  30. 29.
    N. I. Grineva, V. F. Zarytova, and D. G. Knorre, Izvest. Sibirsk. Otdel. Akad. Nauk SSSR, Ser. Khim., (5):118 (1968).Google Scholar
  31. 30.
    F. Cramer, H. P. Bär, H. J. Rhaese, W. Sänger, K. H. Scheit, G. Schneider, and J. Tennigkeit, Tetrahedron Letters, 1039 (1963).Google Scholar
  32. 31.
    J. Žemlička, J. Beranek, and J. Smrt, Coll. Czech. Chem. Comm., 27:2784 (1962).Google Scholar
  33. 32.
    G. Kresze, E. Lodemann, and A. Wacker, Z. Naturforsch., 22b:285 (1967).Google Scholar
  34. 33.
    C. B. Reese and J. C. M. Stewart, Tetrahedron Letters, 4273 (1968).Google Scholar
  35. 34.
    R. L. Letsinger, M. H. Caruthers, P. S. Miller, and K. K. Ogilvie, J. Am. Chem. Soc., 89:7146 (1967).Google Scholar
  36. 35.
    R. L. Letsinger and K. K. Ogilvie, J. Org. Chem., 32:296. (1967).Google Scholar
  37. 36.
    K. K. Ogilvie and R. L. Letsinger, J. Org. Chem., 32:2365 (1967).Google Scholar
  38. 37.
    T. B. Windholz and D. B. R. Johnston, Tetrahedron Letters, 2555 (1967).Google Scholar
  39. 38.
    A. F. Cook, J. Org. Chem., 33:3589 (1968).Google Scholar
  40. 39.
    A. Hampton and A. W. Nichol, J. Org. Chem., 31:3402 (1966).Google Scholar
  41. 40.
    A. Hampton and A. W. Nichol, Biochemistry, 5:2076 (1966).Google Scholar
  42. 41.
    J. Smrt, Tetrahedron Letters, 3133 (1967).Google Scholar
  43. 42.
    J. Smrt, Coll. Czech, Chem. Comm., 33:1462 (1968).Google Scholar
  44. 43.
    D. G. Knorre, N. M. Pustoshilova, N. M. Teplova, and G. G. Shamovskii, Biokhimiya, 30:1218 (1965).Google Scholar
  45. 44.
    D. G. Knorre, A. M. Malysheva, N. M. Pustoshilova, A. P. Sevast’yanov, and G. G. Shamovskii, Biokhimiya, 31:1181 (1966).Google Scholar
  46. 45.
    D. G. Knorre and G. G. Shamovskii, Molekul. Biol., 2:37 (1968).Google Scholar
  47. 46.
    D. G. Knorre, N. M. Pustoshilova, and A. P. Sevast’yanov, Biokhimiya, 33:56 (1968).Google Scholar
  48. 47.
    D. G. Knorre, V. I. Sirotyuk, and L. E. Stefanovich, Molekul. Biol., 1:837 (1967).Google Scholar
  49. 48.
    D. G. Knorre, N. M. Pustoshilova, and N. M. Teplova, Biokhimiya, 31:666 (1966).Google Scholar
  50. 49.
    H. G. Zachau and H. Feldmann, Progr. Nucl. Acid Res., 4:217 (1965).Google Scholar
  51. 50.
    T. Wieland, F. Jaenicke, H. Merz, and M. Ossorio, Ann., 613:95 (1958).Google Scholar
  52. 51.
    T. Wieland, H. Merz, and G. Pfleiderer, Chem. Ber., 93:1816 (1960).Google Scholar
  53. 52.
    H. G. Zachau and W. Karau, Chem. Ber., 93:1830 (1960).Google Scholar
  54. 53.
    É. Ya. Dreiman, V. A. Dmitriev, S. G. Kamsolova, Z. A. Shabarova, and M. A. Prokof’ev, Zh. Obshch. Khim., 31:3899 (1961).Google Scholar
  55. 54.
    N. I. Sokolova, V. A. Bakanova, Z. A. Shabarova, and M. A. Prokof’ev, Zh. Obshch. Khim., 33:2408 (1963).Google Scholar
  56. 55.
    Z. A. Shabarova, V. D. Smirnov, and M. A. Prokof’ev, Biokhimiya, 29:502 (1964).Google Scholar
  57. 56.
    D. H. Rammler and H. G. Khorana, J. Am. Chem. Soc., 85:1997 (1963).Google Scholar
  58. 57.
    O. I. Slutskii and B. P. Gottikh, Biokhimiya, 30:1032 (1965).Google Scholar
  59. 58.
    P. P. Purygin, A. A. Kraevskii, and B. P. Gottikh, Izvest. Akad. Nauk SSSR, Ser. Khim., 378 (1968).Google Scholar
  60. 59.
    N. B. Tarusova, A. A. Kraevskii, P. P. Purygin, T. L. Tsilevich, and B. P. Gottikh, Izvest. Akad. Nauk SSSR, Ser. Khim. (in press).Google Scholar
  61. 60.
    B. P. Gottikh, A. A. Kraevskii, L. L. Kiselev, and L. Yu. Frolova, Molekul. Biol., 1:767 (1967).Google Scholar
  62. 61.
    B. P. Gottikh, A. A. Kraevskii, T. L. Tsilevich, and L. N. Rudzite, Izvest. Akad. Nauk SSSR, Ser. Khim. (in press).Google Scholar
  63. 62.
    J. Žemlička and S. Chládek, Coll. Czech. Chem. Comm., 31:3775 (1966).Google Scholar
  64. 63.
    S. Chládek and J. Žemlička, Coll. Czech. Chem. Comm., 32:1776 (1967).Google Scholar
  65. 64.
    S. Chládek and J. Žemlička, Coll. Czech. Chem. Comm., 33:232 (1968).Google Scholar
  66. 65.
    R. Wolfenden, Biochemistry, 2:1090 (1963).Google Scholar
  67. 66.
    H. G. Zachau, Chem. Ber., 93:1822 (1960).Google Scholar
  68. 67.
    N. Coles, M. W. Bukenberger, and A. Meister, Biochemistry, 1:317 (1962).Google Scholar
  69. 68.
    T. Ishida and K. I. Miura, J. Mol. Biol., 11:341 (1965).Google Scholar
  70. 69.
    W. Frank and H. G. Zachau, Z. Physiol. Chem., 331:258 (1963).Google Scholar
  71. 70.
    J. Sonnenbichler, H. Feldmann, and H. G. Zachau, Z. Physiol. Chem., 334:283 (1963);Google Scholar
  72. 70a.
    J. Sonnenbichler, H. Feldmann, and H. G. Zachau, Z. Physiol. Chem., 341:249 (1965).Google Scholar
  73. 71.
    R. Wolfenden, D. H. Rammler, and F. Lipmann, Biochemistry, 3:329 (1964).Google Scholar
  74. 72.
    V. M. Clark, D. W. Hutchinson, J. A. Kirby, and S. G. Warren, Angew. Chem., 76:704 (1964).Google Scholar
  75. 72a.
    D. M. Brown, in: Advances in Organic Chemistry: Methods and Results, Vol. 3, R. A. Raphael, E. C. Taylor, and H. Wynberg (editors), Interscience Publishers, London (1963), p. 75.Google Scholar
  76. 73.
    T. Ueda and J. J. Fox, Adv. Carbohydr. Chem., 22:307 (1967).Google Scholar
  77. 74.
    J. Smrt and F. Sorm, Coll. Czech. Chem. Comm., 28:2415 (1963).Google Scholar
  78. 75.
    J. Smrt and F. Sorm, Coll. Czech. Chem. Comm., 28:2434 (1963).Google Scholar
  79. 76.
    A. M. Duffield and A. L. Nussbaum, J. Am. Chem. Soc., 86:111 (1964).Google Scholar
  80. 77.
    D. Söll and H. G. Khorana, J. Am. Chem. Soc., 87:350 (1965).Google Scholar
  81. 78.
    A. M. Michelson, Biochim. Biophys. Acta, 114:460 (1966).Google Scholar
  82. 79.
    A. Holý and J. Smrt, Coll. Czech. Chem. Comm., 31:1528 (1966).Google Scholar
  83. 80.
    A. Holý and H. Pischel, Coll. Czech. Chem. Comm., 32:3719 (1967).Google Scholar
  84. 81.
    B. E. Griffin and C. B. Reese, Tetrahedron, 24:2537 (1968).Google Scholar
  85. 82.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 105:419 (1934).Google Scholar
  86. 83.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 121:131 (1937).Google Scholar
  87. 84.
    E. Benz, N. F. Elmore, and L. Goodman, J. Org. Chem., 30:3067 (1965).Google Scholar
  88. 85.
    E. J. Reist, P. A. Hart, L. Goodman, and B. R. Baker, J. Org. Chem., 26:1557 (1961).Google Scholar
  89. 86.
    J. P. Horwitz, J. Chua, M. Noell, and J. T. Donatti, J. Org. Chem., 32:817 (1967).Google Scholar
  90. 87.
    D. M. Brown, A. R. Todd, and S. Varadarajan, J. Chem. Soc., 2388 (1956).Google Scholar
  91. 88.
    A. R. Todd and T. L. Ulbricht, J. Chem. Soc., 3275 (1960).Google Scholar
  92. 89.
    J. F. Codington, R. Fecher, and J. J. Fox, J. Am. Chem. Soc., 82:2794 (1960).Google Scholar
  93. 90.
    A. M. Michelson, J. Chem. Soc., 1371 (1959).Google Scholar
  94. 91.
    R. L. Letsinger, J. Fontaine, V. Mahadevan, D. A. Schexhayder, and R. E. Leone, J. Org. Chem., 29:2615 (1964).Google Scholar
  95. 92.
    G. W. Grams and R. L. Letsinger, J. Org. Chem., 33:2589 (1968).Google Scholar
  96. 93.
    M. Ikehara and E. Ohtsuka, Chem. Pharm. Bull., 12:145 (1964).Google Scholar
  97. 94.
    A. M. Yurkevich, I. I. Kolodkina, and N. A. Preobrazhenskii, Dokl. Akad. Nauk SSSR, 164:828 (1965).Google Scholar
  98. 95.
    A. M. Yurkevich, L. S. Varshavskaya, I. I. Kolodkina, and N. A. Preobrazhenskii, Zh. Obshch. Khim., 37:2002 (1967).Google Scholar
  99. 96.
    A. M. Yurkevich, I. I. Kolodkina, G. S. Evdokimova, E. T. Bazhanova, and N. A. Preobrazhenskii, in: The Chemistry of Organophosphorus Compounds [in Russian], Nauka (1967), p. 215.Google Scholar
  100. 97.
    I. I. Kolodkina, L. S. Varshavskaya, A. M. Yurkevich, and N. A. Preobrazhenskii, Zh. Obshch. Khim., 37:1996 (1967).Google Scholar
  101. 98.
    Y. Sasaki and T. Hashizume, Anal. Biochem., 16:1 (1966).Google Scholar
  102. 99.
    T. Hasyizume and Y. Sasaki, Anal. Biochem., 15:199 (1966).Google Scholar
  103. 100.
    R. L. Hancock and D. L. Goleman, Anal. Biochem., 10:365 (1965).Google Scholar
  104. 101.
    R. L. Hancock, J. Gas Chrom., 4:363 (1966).Google Scholar
  105. 102.
    C. W. Gehrke, D. L. Stalling, and C. D. Ruyle, Biochem. Biophys. Res. Comm., 28:819 (1967).Google Scholar
  106. 103.
    J. McCloskey, A. M. Lawson, K. Tsuboyama, P. M. Krueger, and R. N. Stilwell, J. Am. Chem. Soc., 90:4182 (1968).Google Scholar
  107. 104.
    D. F. Hunt, C. E. Hignite, and K. Biemann, Biochem. Biophys. Res. Comm., 33:378 (1968).Google Scholar
  108. 105.
    W. Szer and D. Shugar, Biokhimiya, 26:840 (1961).Google Scholar
  109. 106.
    A. D. Broom and R. K. Robins, J. Am. Chem. Soc., 87:1145 (1965).Google Scholar
  110. 107.
    T. A. Khwaja and R. K. Robins, J. Am. Chem. Soc., 88:3640 (1966).Google Scholar
  111. 108.
    D. M. G. Martin, C. B. Reese, and G. F. Stephenson, Biochemistry, 7:1406 (1968).Google Scholar
  112. 109.
    J. B. Gin and C. A. Dekker, Biochemistry, 7:1413 (1968).Google Scholar
  113. 110.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 94:809 (1932);Google Scholar
  114. 110a.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 97:491 (1932);Google Scholar
  115. 110b.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 101:529 (1933).Google Scholar
  116. 111.
    D. M. Brown, D. J. Magrath, and A. R. Todd, J. Chem. Soc., 1442 (1954).Google Scholar
  117. 112.
    A. S. Anderson, G. R. Barker, M. J. Gulland, and M. V. Lock, J. Chem. Soc., 369 (1952).Google Scholar
  118. 113.
    Y. Fukuhara, K. Kobayshi, Y. Kahai, and M. Honjo, Chem. Pharm. Bull, 13: 1273 (1965).Google Scholar
  119. 114.
    A. M. Michelson and A. R. Todd, J. Chem. Soc., 3459 (1956).Google Scholar
  120. 115.
    B. E. Griffin, C. B. Reese, G. F. Stephenson, and D. R. Trentham, Tetrahedron Letters, 4349 (1966).Google Scholar
  121. 116.
    C. B. Reese and D. R. Tretham, Tetrahedron Letters, 2459 (1965).Google Scholar
  122. 117.
    K. Kikugawa, F. Sato, T. Tsuruo, N. Imura, and T. Ukita, Chem. Pharm. Bull., 16:1110 (1968).Google Scholar
  123. 118.
    N. Imura, T. Tsuruo, and T. Ukita, Chem. Pharm. Bull., 16:1105 (1968).Google Scholar
  124. 119.
    H. Bredereck, Ber., 66:198 (1933);Google Scholar
  125. 119a.
    H. Bredereck, Z. Physiol. Chem., 223:61 (1934).Google Scholar
  126. 120.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 104:385 (1934).Google Scholar
  127. 121.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 109:623 (1935).Google Scholar
  128. 122.
    A. M. Michelson and A. R. Todd, J. Chem. Soc., 951 (1953).Google Scholar
  129. 123.
    A. M. Michelson and A. R. Todd, J. Chem. Soc., 34 (1954).Google Scholar
  130. 124.
    J. P. Horwitz, I. A. Urbanski, and J. Chua, J. Org. Chem., 27:3300 (1962).Google Scholar
  131. 125.
    J. F. Codington, I. L. Doerr, and J. J. Fox, J. Org. Chem., 29:588 (1964).Google Scholar
  132. 126.
    N. C. Yung and J. J. Fox, J. Am. Chem. Soc., 83:3060 (1961).Google Scholar
  133. 127.
    J. Žemlička, Coll. Czech. Chem. Comm., 29:1734 (1964).Google Scholar
  134. 128.
    H. U. Blank and W. Pfleiderer, Tetrahedron Letters, 869 (1967).Google Scholar
  135. 129.
    J. F. Codington and J. J. Fox, Carbohydrate Res., 3:124 (1966).Google Scholar
  136. 130.
    M. Smith, D. H. Rammler, I. H. Goldberg, and H. G. Khorana, J. Am. Chem. Soc., 84:430 (1962).Google Scholar
  137. 131.
    D. H. Rammler. Y. Lapidot, and H. G. Khorana, J. Am. Chem. Soc., 85:1989 (1963).Google Scholar
  138. 132.
    E. Ohtsuka and H. G. Khorana, J. Am. Chem. Soc., 89:2195 (1967).Google Scholar
  139. 133.
    R. Lohrmann, D. Söll, H. Hayatsu, E. Ohtsuka, and H. G. Khorana, J. Am. Chem. Soc., 88:819 (1966).Google Scholar
  140. 134.
    M. Smith and H. G. Khorana, J. Am. Chem. Soc., 81:2911 (1959).Google Scholar
  141. 135.
    J. Smrt and F. Sorm, Coll. Czech. Chem. Comm., 27:73 (1962).Google Scholar
  142. 136.
    D. H. Rammler and H. G. Khorana, J. Am. Chem. Soc., 84:3112 (1962).Google Scholar
  143. 137.
    D. B. Straus, J. Am. Chem. Soc., 87:1735 (1965).Google Scholar
  144. 138.
    S. M. Zhenodarova and É. A. Sedel’nikova, Izvest. Akad. Nauk SSSR, Ser. Khim., 1344 (1964).Google Scholar
  145. 139.
    S. Chládek, J. Žemlička, and F. Sorm, Coll. Czech. Chem., Comm., 31:1785 (1966).Google Scholar
  146. 140.
    C. B. Reese, R. Saffhill, and J. E. Suiston, J. Am. Chem. Soc., 89:3366 (1967).Google Scholar
  147. 141.
    A. Hampton, J. Am. Chem. Soc., 87:4654 (1965).Google Scholar
  148. 142.
    É. A. Sedel’nikova and S. M. Zhenodarova, Zh. Obshch. Khim., 38:2234, 2239 (1968).Google Scholar
  149. 143.
    L. A. Cohen and J. A. Steele, J. Org. Chem., 31:2333 (1966).Google Scholar
  150. 144.
    P. A. Levene and R. S. Tipson, J. Biol. Chem., 106:113 (1934).Google Scholar
  151. 145.
    J. Baddiley and A. R. Todd, J. Chem. Soc., 648 (1947).Google Scholar
  152. 146.
    A. M. Michelson and A. R. Todd, J. Chem. Soc., 2476 (1949).Google Scholar
  153. 147.
    R. W. Chambers, I. G. Moffatt, and H. G. Khorana, J. Am. Chem. Soc., 79:3747 (1957).Google Scholar
  154. 148.
    R. W. Chambers, R. Shapiro, and V. Kurkov, J. Am. Chem. Soc., 82:970 (1960).Google Scholar
  155. 149.
    A. Hampton, J. Am. Chem. Soc., 83:3640 (1961).Google Scholar
  156. 150.
    S. Chládek and J. Smrt, Coll. Czech. Chem. Comm., 28:1301 (1963).Google Scholar
  157. 151.
    A. Hampton, J. C. Fratantori, and P. M. Carroll, J. Am. Chem. Soc., 87:5481 (1965).Google Scholar
  158. 152.
    D. M. Brown, L. J. Haynes, and A. R. Todd, J. Chem. Soc., 408:2399 (1950).Google Scholar
  159. 153.
    F. Cramer, W. Sanger, K. H. Scheit, and J. Tennigkeit, Ann., 679:156 (1964).Google Scholar
  160. 154.
    J. M. Gulland and H. Smith, J. Chem. Soc., 338 (1947).Google Scholar
  161. 155.
    J. M. Gulland and H. Smith, J. Chem. Soc., 527 (1948).Google Scholar
  162. 156.
    N. Bagget, A. B. Foster, J. W. Webber, D. Lipkin, and B. E. Phillips, Chem. and Ind., 136 (1965).Google Scholar
  163. 157.
    J. Žemlička, S. Chládek, A. Holý, and J. Smrt, Coll. Czech. Chem. Comm., 31:3198 (1966).Google Scholar
  164. 158.
    F. Eckstein and F. Cramer, Chem. Ber., 98:995 (1965).Google Scholar
  165. 159.
    B. E. Griffin and M. Jahrman, Tetrahedron, 23:2301 (1967).Google Scholar
  166. 160.
    G. P. Moss, C. B. Reese, K. Schofield, R. S. Shapiro, and A. R. Todd, J. Chem. Soc., 1149 (1963).Google Scholar
  167. 161.
    K. Iwai and M. Honjo, Chem. Pharm. Bull., 13:7 (1965).Google Scholar
  168. 162.
    J. P. Vizsolyi and G. M. Tener, Chem. and Ind., 263 (1962).Google Scholar
  169. 163.
    A. S. Jones, A. R. Williamson, and M. Winkley, Carbohydrate Res., 1:187 (1965).Google Scholar
  170. 164.
    K. E. Pfitzner and J. G. Moffatt, J. Am. Chem. Soc., 85:3027 (1963).Google Scholar
  171. 165.
    K. E. Pfitzner and J. G. Moffatt, J. Am. Chem. Soc., 87:5661, 5670 (1965).Google Scholar
  172. 166.
    A. F. Cook and J. G. Moffatt, J. Am. Chem. Soc., 89:2696 (1967).Google Scholar
  173. 167.
    T. Gabriel, W. Y. Chen, and A. L. Nussbaum, J. Am. Chem. Soc., 90:6833 (1968).Google Scholar
  174. 168.
    B. Lythgoe and A. R. Todd, J. Chem. Soc., 592 (1944).Google Scholar
  175. 169.
    M. Viscontini, D. Hoch, and P. Karrer, Helv. Chim. Acta, 38:642 (1955).Google Scholar
  176. 170.
    B. Lythgoe, H. Smith, and A. R. Todd, J. Chem. Soc., 355 (1947).Google Scholar
  177. 171.
    J. Davoll, B. Lythgoe, and A. R. Todd, J. Chem. Soc., 883 (1946).Google Scholar
  178. 172.
    J. X. Khym and W. E. Cohn, J. Am. Chem. Soc., 82:6380 (1960).Google Scholar
  179. 173.
    U. L. RajBhandary, J. Biol. Chem., 243:556 (1968).Google Scholar
  180. 174.
    J. A. Hunt, Biochem. J., 95:441 (1965);Google Scholar
  181. 174a.
    J. E. M. Midgley, Biochim. Biophys. Acta, 108:340 (1965).Google Scholar
  182. 175.
    R. Dulbecco and J. D. Smith, Biochim. Biophys. Acta, 39:358 (1960).Google Scholar
  183. 176.
    A. Steinschneider and H. Fraenkel-Conrat, Biochemistry, 5:2729 (1966).Google Scholar
  184. 177.
    J. X. Khym, Biochemistry, 2:344 (1963).Google Scholar
  185. 178.
    K. A. Watanabe, J. Beranek, H. A. Friedman, and J. J. Fox, J. Org. Chem., 30:2735 (1965).Google Scholar
  186. 179.
    J. Beranek, H. A. Friedman, K. A. Watanabe, and J. J. Fox, J. Heterocyclic Chem., 2:188 (1965).Google Scholar
  187. 180.
    F. M. Lichtenthaler and H. P. Albrecht, Chem. Ber., 99:575 (1966).Google Scholar
  188. 181.
    H. C. Neu and L. A. Heppel, J. Biol. Chem., 239:2927 (1964).Google Scholar
  189. 182.
    M. L. Stephenson and P. C. Zamecnik, in: Methods in Enzymology, Vol. 12, Part A, K. Moldave and L. Grossman (editors), Academic Press, New York-London (1967), p. 670.Google Scholar
  190. 183.
    G. Zubay, J. Mol. Biol., 4:347 (1962).Google Scholar
  191. 184.
    P. C. Zamecnik, M. L. Stephenson, and J. F. Scott, Proc. Nat. Acad. Sci. USA, 46:811 (1960).Google Scholar
  192. 185.
    M. L. Stephenson and P. G. Zamecnik, Proc. Nat. Acad. Sci. USA, 47:1627 (1961).Google Scholar
  193. 186.
    D. G. Knorre, S. D. Myzina, and L. S. Sandakhchiev, Izvest. Sibirsk. Otdel. Akad. Nauk SSSR, Ser. Khim., (11):135 (1964).Google Scholar
  194. 187.
    L. Yu. Frolova, L. S. Sandakhchiev, D. G. Knorre, and L. L. Kiselev, Dokl. Akad. Nauk SSSR, 158:235 (1964).Google Scholar
  195. 188.
    A. D. Mirzabekov, A. I. Krutilina, P. D. Reshetov, L. S. Sandakhchiev, D. G. Knorre, A. S. Khokhlov, and A. A. Baev, Dokl. Akad. Nauk SSSR, 160:1200 (1965).Google Scholar
  196. 189.
    M. I. Grachev, N. I. Menzorova, L. S. Sandakhchiev, E. I. Budovskii, and D. G. Knorre, Biokhimiya, 31:840 (1966).Google Scholar
  197. 190.
    V. Habermann, E. Maidlova, and R. Cerny, Coll. Czech. Chem. Comm., 31: 149 (1966).Google Scholar
  198. 191.
    J. S. Lee and P. T. Gilham, J. Am. Chem. Soc., 88:5685 (1966).Google Scholar
  199. 192.
    A. M. Michelson and M. Grunberg-Manago, Biochim. Biophys. Acta, 91:92 (1964).Google Scholar
  200. 193.
    F. Cramer, F. Haar, and E. Schlimme, FEBS Letters, 2:136 (1968).Google Scholar
  201. 194.
    H. S. Sachev and N. A. Starkovsky, Tetrahedron Letters, 733 (1969).Google Scholar
  202. 195.
    B. E. Griffin and C. B. Reese, Tetrahedron, 25:4057 (1969).Google Scholar
  203. 196.
    G. R. Niaz and C. B. Reese, Chem. Comm., 552 (1969).Google Scholar
  204. 197.
    G. Russev, Anal. Biochem., 27:244 (1969).Google Scholar

Copyright information

© Plenum Publishing Company Ltd. 1972

Authors and Affiliations

  • N. K. Kochetkov
  • E. I. Budovskii

There are no affiliations available

Personalised recommendations