Skip to main content

Defect Mobilities in Ionic Crystals Containing Aliovalent Ions

  • Chapter
Point Defects in Solids

Abstract

In ionic crystals, there is an opportunity to create a rather unique type of defect complex by the introduction of aliovalent impurities, i.e., impurity ions which differ in charge from the corresponding solvent ion. When such impurities are introduced, additional defects (either vacancies or interstitial ions) must accompany the aliovalent ions in order to achieve charge compensation, the defect possessing an effective charge equal and opposite to that of the impurity ion. Accordingly, the two entities will experience a Coulomb attraction tending to produce, if the temperature is not too high, a dipole or defect complex which possesses a relatively strong binding energy. The existence of such complexes profoundly affects many of the properties of ionic crystals, including mechanical as well as electrical properties. This chapter is concerned mainly with information about ionic motions which can be obtained by studying such doped crystals. On the one hand, diffusion of the aliovalent ion may be very different from self-diffusion, due to the presence of the compensating defect. On the other hand, the methods of dielectric and anelastic relaxation may be used to observe the reorientation of the complex in an appropriate externally applied field (electric or stress field, respectively). These measurements, therefore, give direct information on the kinetics of the rate-controlling steps in the re-orientation process. Combining this information with corresponding information on kinetics of migration (from diffusion measurements or the study of the dipole aggregation), can give a rather complete picture of the various ionic motions which take place in the presence of aliovalent impurity ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bassani and F. Fumi, Nuovo Cim. 11, 274 (1954).

    Article  Google Scholar 

  2. M. P. Tosi and G. Airoldi, Nuovo Cim. 8, 584 (1958).

    Article  Google Scholar 

  3. A. B. Lidiard, in Encyclopedia of Physics, Vol. 20, Ed. by S. Flügge (Springer, Berlin, 1957), p. 246.

    Google Scholar 

  4. F. K. Fong, Phys. Rev. 187, 1099 (1969).

    Article  ADS  Google Scholar 

  5. A. R. Allnatt and M. H. Cohen, J. Chem. Phys. 40, 1860, 1871 (1964).

    Google Scholar 

  6. A. B. Lidiard, Phil. Mag. 46, 815 (1955).

    Google Scholar 

  7. R. E. Howard and A. B. Lidiard, Rep. Prog. Phys. 27, 161 (1964), § 5.

    Article  ADS  Google Scholar 

  8. C. Tomizuka, in Methods of Experimental Physics, Vol. 6A, Ed. by Lark-Horovitz and Johnson (Academic Press, New York, 1959), p. 364.

    Google Scholar 

  9. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford 1946).

    Google Scholar 

  10. M. Chemla, Thesis, University of Paris, 1954.

    Google Scholar 

  11. F. J. Keneshea and W. J. Fredericks, J. Chem. Phys. 41, 3271 (1964).

    Article  ADS  Google Scholar 

  12. S. J. Rothman, L. W. Barr, A. H. Rowe, and P. G. Selwood, Phil. Mag. 14, 501 (1966).

    Article  ADS  Google Scholar 

  13. P. Süptitz and R. Weidmann, Phys. Stat. Sol. 27, 631 (1968).

    Article  ADS  Google Scholar 

  14. A. P. Batra, A. L. Laskar, G. Brebec and L. Slifkin, Radiation Effects 4, 257 (1970).

    Article  ADS  Google Scholar 

  15. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).

    Google Scholar 

  16. A. S. Nowick and W. R. Heller, Adv. Phys. 14, 101 (1965).

    Article  ADS  Google Scholar 

  17. A. S. Nowick, Adv. Phys. 16, 1 (1967).

    Article  ADS  Google Scholar 

  18. A. S. Nowick, J. Phys. Chem. Solids 31, 1819 (1970).

    Article  ADS  Google Scholar 

  19. Y. Haven and J. H. van Santen, Nuovo Cim. Suppl. 7(2), 605 (1958).

    Article  Google Scholar 

  20. A. S. Nowick and W. R. Heller, Adv. Phys. 12, 251 (1963).

    Article  ADS  Google Scholar 

  21. D. S. Park, Master’s Thesis, Columbia University, 1970.

    Google Scholar 

  22. R. W. Dreyfus, Phys. Rev. 121, 1675 (1961).

    Article  ADS  Google Scholar 

  23. C. Bucci and R. Fieschi, Phys. Rev. Lett. 12, 16 (1964).

    Article  ADS  Google Scholar 

  24. C. Bucci, R. Fieschi, and G. Guidi, Phys. Rev. 148, 816 (1966).

    Article  ADS  Google Scholar 

  25. R. Cappelletti and R. Fieschi, Crystal Lattice Defects 1, 69 (1969).

    Google Scholar 

  26. R. W. Dreyfus and R. B. Laibowitz, Phys. Rev. 135, A1413 (1964).

    Article  ADS  Google Scholar 

  27. H. B. Johnson, N. J. Tolar, G. R. Miller, and I. B. Cutler, J. Phys. Chem. Solids 30, 31 (1969).

    Article  ADS  Google Scholar 

  28. J. B. Wachtman, Jr., Phys. Rev. 131, 517 (1963).

    Article  ADS  Google Scholar 

  29. K. W. Lay and D. H. Whitmore, Phys. Stat. Sol. (b) 43, 175 (1971).

    Article  ADS  Google Scholar 

  30. R. W. Ure, Jr., J. Phys. Chem. 26, 1363 (1957).

    Article  Google Scholar 

  31. R. D. Shelley and G. R. Miller, J. Solid State Chem. 1, 218 (1970).

    Article  ADS  Google Scholar 

  32. B. Bleaney, J. Appl. Phys. (Suppl.) 33, 358 (1962).

    Article  ADS  Google Scholar 

  33. J. M. Baker, E. R. Davies, and J. P. Hurrell, Proc. Roy. Soc. A308, 403 (1968).

    ADS  Google Scholar 

  34. J. Short and R. Roy, J. Phys. Chem. 67, 1860 (1963).

    Article  Google Scholar 

  35. P. D. Southgate, J. Phys. Chem. Solids 27, 1623 (1966).

    Article  ADS  Google Scholar 

  36. J. H. Chen and M. S. McDonough, Phys. Rev. 185, 453 (1969).

    Article  ADS  Google Scholar 

  37. E. Barsis and A. Taylor, Phys. Rev. B 3, 1506 (1971).

    Article  ADS  Google Scholar 

  38. J. P. Stott and J. H. Crawford, Jr., Phys. Rev. Lett. 26, 384 (1971) and references quoted therein. Also, J. H. Crawford, Jr., private communication.

    Article  ADS  Google Scholar 

  39. A. D. Franklin and J. Crissman, J. Phys. C 4, L 239.

    Google Scholar 

  40. A. D. Franklin, J. Res. Nat. Bur. Std. 67A, 291 (1963).

    Article  Google Scholar 

  41. J. S. Dryden and R. J. Meakins, Disc. Faraday Soc. 1957 (23), 39.

    Article  Google Scholar 

  42. J. H. Crawford, Jr., J. Phys. Chem. Solids 31, 399 (1970).

    Article  ADS  Google Scholar 

  43. S. C. Jain and K. Lal, Proc. Phys. Soc. 92, 990 (1967).

    Article  ADS  Google Scholar 

  44. Y. Iida and Y. Tomono, J. Phys. Soc. Japan 19, 1264 (1964).

    Article  ADS  Google Scholar 

  45. G. D. Watkins, Phys. Rev. 113, 79 (1959).

    Article  ADS  Google Scholar 

  46. H. F. Symmons, J. Phys. C 3, 1846 (1970).

    Article  ADS  Google Scholar 

  47. L. W. Barr and A. B. Lidiard, in Physical Chemistry—An Advanced Treatise, Vol. 10, Ed. by H. Eyring et al. (Academic Press, New York, 1970).

    Google Scholar 

  48. C. Bucci, Phys. Rev. 164, 1200 (1967).

    Article  ADS  Google Scholar 

  49. I. Kunze and P. Müller, Phys. Stat. Sol. 33, 91 (1969).

    Article  ADS  Google Scholar 

  50. J. S. Cook and J. S. Dryden, Proc. Phys. Soc. 80, 479 (1962).

    Article  ADS  Google Scholar 

  51. J. S. Dryden, J. Phys. Soc. Japan, Suppl. III, 18, 129 (1965).

    Google Scholar 

  52. J. S. Dryden and G. G. Harvey, J. Phys. C (Solid State) 2, 603 (1969).

    Article  ADS  Google Scholar 

  53. A. S. Nowick and M. W. Stanley, J. Appl. Phys. 40, 4995 (1969).

    Article  ADS  Google Scholar 

  54. A. S. Nowick and M. W. Stanley, in Physics of the Solid State, Ed. by S. Balakrishna (Academic Press, New York, 1969), p. 183.

    Google Scholar 

  55. J. M. Stevels and J. Volger, Philips Res. Repts. 17, 283 (1962).

    Google Scholar 

  56. D. B. Fräser, J. Appl. Phys. 35, 2913 (1964).

    Article  ADS  Google Scholar 

  57. J. L. Krause and W. J. Fredericks, J. Phys. Chem. Solids, 32, 2673 (1971).

    Article  ADS  Google Scholar 

  58. C. H. Burton and J. S. Dryden, J. Phys. C. (Solid State) 3, 523 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Nowick, A.S. (1972). Defect Mobilities in Ionic Crystals Containing Aliovalent Ions. In: Crawford, J.H., Slifkin, L.M. (eds) Point Defects in Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2970-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2970-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2972-5

  • Online ISBN: 978-1-4684-2970-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics