Defect Mobilities in Ionic Crystals Containing Aliovalent Ions

  • A. S. Nowick


In ionic crystals, there is an opportunity to create a rather unique type of defect complex by the introduction of aliovalent impurities, i.e., impurity ions which differ in charge from the corresponding solvent ion. When such impurities are introduced, additional defects (either vacancies or interstitial ions) must accompany the aliovalent ions in order to achieve charge compensation, the defect possessing an effective charge equal and opposite to that of the impurity ion. Accordingly, the two entities will experience a Coulomb attraction tending to produce, if the temperature is not too high, a dipole or defect complex which possesses a relatively strong binding energy. The existence of such complexes profoundly affects many of the properties of ionic crystals, including mechanical as well as electrical properties. This chapter is concerned mainly with information about ionic motions which can be obtained by studying such doped crystals. On the one hand, diffusion of the aliovalent ion may be very different from self-diffusion, due to the presence of the compensating defect. On the other hand, the methods of dielectric and anelastic relaxation may be used to observe the reorientation of the complex in an appropriate externally applied field (electric or stress field, respectively). These measurements, therefore, give direct information on the kinetics of the rate-controlling steps in the re-orientation process. Combining this information with corresponding information on kinetics of migration (from diffusion measurements or the study of the dipole aggregation), can give a rather complete picture of the various ionic motions which take place in the presence of aliovalent impurity ions.


Dielectric Relaxation Ionic Crystal Relaxational Mode Jump Frequency Defect Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bassani and F. Fumi, Nuovo Cim. 11, 274 (1954).CrossRefGoogle Scholar
  2. 2.
    M. P. Tosi and G. Airoldi, Nuovo Cim. 8, 584 (1958).CrossRefGoogle Scholar
  3. 3.
    A. B. Lidiard, in Encyclopedia of Physics, Vol. 20, Ed. by S. Flügge (Springer, Berlin, 1957), p. 246.Google Scholar
  4. 4.
    F. K. Fong, Phys. Rev. 187, 1099 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    A. R. Allnatt and M. H. Cohen, J. Chem. Phys. 40, 1860, 1871 (1964).Google Scholar
  6. 6.
    A. B. Lidiard, Phil. Mag. 46, 815 (1955).Google Scholar
  7. 6a.
    R. E. Howard and A. B. Lidiard, Rep. Prog. Phys. 27, 161 (1964), § 5.ADSCrossRefGoogle Scholar
  8. 7.
    C. Tomizuka, in Methods of Experimental Physics, Vol. 6A, Ed. by Lark-Horovitz and Johnson (Academic Press, New York, 1959), p. 364.Google Scholar
  9. 8.
    J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford 1946).Google Scholar
  10. 9.
    M. Chemla, Thesis, University of Paris, 1954.Google Scholar
  11. 10.
    F. J. Keneshea and W. J. Fredericks, J. Chem. Phys. 41, 3271 (1964).ADSCrossRefGoogle Scholar
  12. 11.
    S. J. Rothman, L. W. Barr, A. H. Rowe, and P. G. Selwood, Phil. Mag. 14, 501 (1966).ADSCrossRefGoogle Scholar
  13. 12.
    P. Süptitz and R. Weidmann, Phys. Stat. Sol. 27, 631 (1968).ADSCrossRefGoogle Scholar
  14. 13.
    A. P. Batra, A. L. Laskar, G. Brebec and L. Slifkin, Radiation Effects 4, 257 (1970).ADSCrossRefGoogle Scholar
  15. 14.
    A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).Google Scholar
  16. 15.
    A. S. Nowick and W. R. Heller, Adv. Phys. 14, 101 (1965).ADSCrossRefGoogle Scholar
  17. 16.
    A. S. Nowick, Adv. Phys. 16, 1 (1967).ADSCrossRefGoogle Scholar
  18. 17.
    A. S. Nowick, J. Phys. Chem. Solids 31, 1819 (1970).ADSCrossRefGoogle Scholar
  19. 18.
    Y. Haven and J. H. van Santen, Nuovo Cim. Suppl. 7(2), 605 (1958).CrossRefGoogle Scholar
  20. 19.
    A. S. Nowick and W. R. Heller, Adv. Phys. 12, 251 (1963).ADSCrossRefGoogle Scholar
  21. 20.
    D. S. Park, Master’s Thesis, Columbia University, 1970.Google Scholar
  22. 21.
    R. W. Dreyfus, Phys. Rev. 121, 1675 (1961).ADSCrossRefGoogle Scholar
  23. 22.
    C. Bucci and R. Fieschi, Phys. Rev. Lett. 12, 16 (1964).ADSCrossRefGoogle Scholar
  24. 23.
    C. Bucci, R. Fieschi, and G. Guidi, Phys. Rev. 148, 816 (1966).ADSCrossRefGoogle Scholar
  25. 24.
    R. Cappelletti and R. Fieschi, Crystal Lattice Defects 1, 69 (1969).Google Scholar
  26. 25.
    R. W. Dreyfus and R. B. Laibowitz, Phys. Rev. 135, A1413 (1964).ADSCrossRefGoogle Scholar
  27. 26.
    H. B. Johnson, N. J. Tolar, G. R. Miller, and I. B. Cutler, J. Phys. Chem. Solids 30, 31 (1969).ADSCrossRefGoogle Scholar
  28. 27.
    J. B. Wachtman, Jr., Phys. Rev. 131, 517 (1963).ADSCrossRefGoogle Scholar
  29. 28.
    K. W. Lay and D. H. Whitmore, Phys. Stat. Sol. (b) 43, 175 (1971).ADSCrossRefGoogle Scholar
  30. 29.
    R. W. Ure, Jr., J. Phys. Chem. 26, 1363 (1957).CrossRefGoogle Scholar
  31. 30.
    R. D. Shelley and G. R. Miller, J. Solid State Chem. 1, 218 (1970).ADSCrossRefGoogle Scholar
  32. 31.
    B. Bleaney, J. Appl. Phys. (Suppl.) 33, 358 (1962).ADSCrossRefGoogle Scholar
  33. 31a.
    J. M. Baker, E. R. Davies, and J. P. Hurrell, Proc. Roy. Soc. A308, 403 (1968).ADSGoogle Scholar
  34. 32.
    J. Short and R. Roy, J. Phys. Chem. 67, 1860 (1963).CrossRefGoogle Scholar
  35. 33.
    P. D. Southgate, J. Phys. Chem. Solids 27, 1623 (1966).ADSCrossRefGoogle Scholar
  36. 34.
    J. H. Chen and M. S. McDonough, Phys. Rev. 185, 453 (1969).ADSCrossRefGoogle Scholar
  37. 35.
    E. Barsis and A. Taylor, Phys. Rev. B 3, 1506 (1971).ADSCrossRefGoogle Scholar
  38. 35a.
    J. P. Stott and J. H. Crawford, Jr., Phys. Rev. Lett. 26, 384 (1971) and references quoted therein. Also, J. H. Crawford, Jr., private communication.ADSCrossRefGoogle Scholar
  39. 35b.
    A. D. Franklin and J. Crissman, J. Phys. C 4, L 239.Google Scholar
  40. 36.
    A. D. Franklin, J. Res. Nat. Bur. Std. 67A, 291 (1963).CrossRefGoogle Scholar
  41. 37.
    J. S. Dryden and R. J. Meakins, Disc. Faraday Soc. 1957 (23), 39.CrossRefGoogle Scholar
  42. 38.
    J. H. Crawford, Jr., J. Phys. Chem. Solids 31, 399 (1970).ADSCrossRefGoogle Scholar
  43. 39.
    S. C. Jain and K. Lal, Proc. Phys. Soc. 92, 990 (1967).ADSCrossRefGoogle Scholar
  44. 40.
    Y. Iida and Y. Tomono, J. Phys. Soc. Japan 19, 1264 (1964).ADSCrossRefGoogle Scholar
  45. 40a.
    G. D. Watkins, Phys. Rev. 113, 79 (1959).ADSCrossRefGoogle Scholar
  46. 40b.
    H. F. Symmons, J. Phys. C 3, 1846 (1970).ADSCrossRefGoogle Scholar
  47. 41.
    L. W. Barr and A. B. Lidiard, in Physical Chemistry—An Advanced Treatise, Vol. 10, Ed. by H. Eyring et al. (Academic Press, New York, 1970).Google Scholar
  48. 42.
    C. Bucci, Phys. Rev. 164, 1200 (1967).ADSCrossRefGoogle Scholar
  49. 43.
    I. Kunze and P. Müller, Phys. Stat. Sol. 33, 91 (1969).ADSCrossRefGoogle Scholar
  50. 44.
    J. S. Cook and J. S. Dryden, Proc. Phys. Soc. 80, 479 (1962).ADSCrossRefGoogle Scholar
  51. 45.
    J. S. Dryden, J. Phys. Soc. Japan, Suppl. III, 18, 129 (1965).Google Scholar
  52. 46.
    J. S. Dryden and G. G. Harvey, J. Phys. C (Solid State) 2, 603 (1969).ADSCrossRefGoogle Scholar
  53. 47.
    A. S. Nowick and M. W. Stanley, J. Appl. Phys. 40, 4995 (1969).ADSCrossRefGoogle Scholar
  54. 48.
    A. S. Nowick and M. W. Stanley, in Physics of the Solid State, Ed. by S. Balakrishna (Academic Press, New York, 1969), p. 183.Google Scholar
  55. 49.
    J. M. Stevels and J. Volger, Philips Res. Repts. 17, 283 (1962).Google Scholar
  56. 50.
    D. B. Fräser, J. Appl. Phys. 35, 2913 (1964).ADSCrossRefGoogle Scholar
  57. 51.
    J. L. Krause and W. J. Fredericks, J. Phys. Chem. Solids, 32, 2673 (1971).ADSCrossRefGoogle Scholar
  58. 52.
    C. H. Burton and J. S. Dryden, J. Phys. C. (Solid State) 3, 523 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • A. S. Nowick
    • 1
  1. 1.Henry Krumb School of MinesColumbia UniversityNew YorkUSA

Personalised recommendations