Ionic Conductivity (Including Self-Diffusion)

  • Robert G. Fuller


Ionic conductivity has become relevant. The recent revival of interest in electric automobiles and solid-state batteries has led to production of high-conductivity solid electrolytes. These new high-conductivity materials, such as RbAg4I5,1,2 have greatly expanded the range over which ionic transport phenomena in solids have been observed. In Fig. 1, we show the conductivity of RbAg4I5 in comparison with the conductivity of the more common alkali and silver halides. We find grouped together on the left-hand, or high-temperature, side of the figure the alkali halide crystals. These materials have been extensively studied.* They are excellent insulators at room temperature and only have significant electrical conductivity within a few hundred degrees of their melting temperatures. Furthermore, in this high-temperature region, the conductivity of the alkali halides is strongly temperature-dependent, the conductivity changes by about 3% per degree Celsius, and the activation energy for conduction is about 2 eV. To the right in Fig. 1, we move to lower temperatures and to materials less well characterized than the alkali halides. The cesium and ammonium halides have ionic conductivities that are about equal in magnitude to the alkali halides but are less strongly temperature-dependent, with activation energies of 1.2 eV. With a conductivity higher by three orders of magnitude, we find silver chloride, with an activation energy for conduction of less than 1 eV.


Ionic Conductivity Impurity Concentration Cation Vacancy Anion Vacancy Alkali Halide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. B. Owens and G. R. Argue, Science 157, 308 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    G. G. Bentle, J. Appl. Phys. 39, 4037 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    L. W. Barr and A. B. Lidiard, “Defects in Ionic Crystals,” in Physical Chemistry—An Advanced Treatise (Academic Press, New York, 1970), Vol. X.Google Scholar
  4. 4.
    W. Schottky, Z. Phys. Chem. Abt. B 29, 335 (1935).Google Scholar
  5. 5.
    C. Wagner, Z. Phys. Chem. Abt. B 38, 325 (1938).Google Scholar
  6. 6.
    N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485 (1938).CrossRefGoogle Scholar
  7. 7.
    P. G. Shewmon, Diffusion in Solids (McGraw-Hill, New York, 1963).Google Scholar
  8. 8.
    N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd Ed. (Oxford Press, London, 1948).Google Scholar
  9. 9.
    A. D. LeClaire, “Correlation Effects in Diffusion in Solids,” Chapter 6 in Physical Chemistry—An Advanced Treatise (Academic Press, New York, 1970), Vol. X.Google Scholar
  10. 10.
    C. Kittel, Elementary Statistical Physics (Wiley, New York, 1958).Google Scholar
  11. 11.
    J. H. Beaumont and P. W. M. Jacobs, J. Chem. Phys. 45, 1496 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    A. B. Lidiard, Handbuch der Physik, Vol. 20, p. 246 (1957).ADSCrossRefGoogle Scholar
  13. 13.
    R. G. Fuller, C. L. Marquardt, M. H. Reilly, and J. C. Wells, Jr., Phys. Rev. 176, 1036 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    R. G. Fuller and H. B. Rosenstock, J. Phys. Chem. Solids 30, 2105 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    H. R. Glyde, Rev. Mod. Phys. 39, 373 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    A. B. Lidiard, Phys. Rev. 94, 29 (1954).ADSCrossRefGoogle Scholar
  17. 17.
    A. R. Allnatt, “Statistical Mechanics of Point-Defect Interactions in Solids,” in Advances in Chemical Physics (Interscience, 1967), Vol. XI.Google Scholar
  18. 18.
    R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge, 1949), Chapter 9.Google Scholar
  19. 19.
    E. Pitts, Proc. Roy. Soc. London A217, 43 (1953).ADSGoogle Scholar
  20. 20.
    S. Chand ra and J. Rolfe, Can. J. Phys. 48, 397 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    S. Chand ra and J. Rolfe, Can. J. Phys. 48, 412 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    V. C. Nelson and R. J. Friauf, J. Phys. Chem. Solids 31, 825 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    D. K. Dawson and L. W. Barr, Phys. Rev. Letters 19, 844 (1967); Proc. Brit. Ceram. Soc. No. 9, 171 (1967); and to be published.ADSCrossRefGoogle Scholar
  24. 24.
    P. L. Read and E. Katz, Phys. Rev. Letters 5, 466 (1960).ADSCrossRefGoogle Scholar
  25. 25.
    D. Mapother, H. N. Crooks, and R. J. Maurer, J. Chem. Phys. 18, 1231 (1950).ADSCrossRefGoogle Scholar
  26. 26.
    D. Patterson, J. A. Morrison, and G. S. Rose, Phil. Mag. 1, 393 (1956).ADSCrossRefGoogle Scholar
  27. 27.
    J. Rolfe, Can. J. Phys. 42, 2195 (1964).ADSCrossRefGoogle Scholar
  28. 28.
    R. G. Fuller and M. H. Reilly, Phys. Rev. Letters 19, 113 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    G. Arai and J. G. Mullen, Phys. Rev. 143, 663 (1966).ADSCrossRefGoogle Scholar
  30. 30.
    R. G. Fuller, Bull. Am. Phys. Soc. 15, 384 (1970).Google Scholar
  31. 31.
    F. Bénière, M. Bénière, and M. Chemla, J. Phys. Chem. Solids 31, 1205 (1970).CrossRefGoogle Scholar
  32. 32.
    E. Laredo and E. Dartyge, J. Chem. Phys. 53, 2214 (1970).ADSCrossRefGoogle Scholar
  33. 33.
    A. R. Allnatt, P. Pantelis, and S. J. Sime, J. Phys. C: Solid St. Phys. 4, 1778 (1971).ADSCrossRefGoogle Scholar
  34. 34.
    H. Kanzaki, K. Kido, S. Tamura, and S. Oki, J. Phys. Soc. Japan 20, 2305 (1965).ADSCrossRefGoogle Scholar
  35. 35.
    I. Boswarva and A. B. Lidiard, Phil. Mag. 16, 805 (1967).ADSCrossRefGoogle Scholar
  36. 36.
    A. M. Karo and J. R. Hardy, Phys. Rev. B3, 3418 (1971).ADSGoogle Scholar
  37. 37.
    P. D. Schulze and J. R. Hardy (to be published).Google Scholar
  38. 38.
    F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25, 31 (1964).ADSCrossRefGoogle Scholar
  39. 39.
    H. Rabin and C. C. Klick, Phys. Rev. 117, 1005 (1960).ADSCrossRefGoogle Scholar
  40. 40.
    D. Lazarus, D. N. Yoom, and R. N. Jeffery, Z. Naturforsch. 26a, 56 (1971).ADSGoogle Scholar
  41. 41.
    R. G. Fuller and M. H. Reilly, J. Phys. Chem. Solids 30, 457 (1969).ADSCrossRefGoogle Scholar
  42. 42.
    P. Süptitz and J. Teltow, Phys. Stat. Sol. 23, 9 (1967).ADSCrossRefGoogle Scholar
  43. 43.
    T. G. Stoebe and P. L. Pratt, Proc. Brit. Ceram. Soc. 9, 171 (1967).Google Scholar
  44. 44.
    T. G. Stoebe and R. A. Huggins, J. Metals Sci. 1, 117 (1966).CrossRefGoogle Scholar
  45. 45.
    M. Eisenstadt, Phys. Rev. 132, 630 (1963).ADSCrossRefGoogle Scholar
  46. 46.
    P. J. Harvey and I. M. Hoodless, Phil. Mag. 16, 545 (1967).ADSCrossRefGoogle Scholar
  47. 47.
    T. M. Herrington and L. A. K. Staveley, J. Phys. Chem. Solids 25, 921 (1964).ADSCrossRefGoogle Scholar
  48. 48.
    R. G. Fuller and F. W. Patten, J. Phys. Chem. Solids 31, 1539 (1970).ADSCrossRefGoogle Scholar
  49. 49.
    Y. Adda and J. Philibert, La Diffusion dans des Solids (Presses Universitaires de France, Paris, 1966), Vol. II.Google Scholar
  50. 50.
    A. L. Laskar and J. Sharma, Bull. Am. Phys. Soc. 15, 390 (1970).Google Scholar
  51. 51.
    N. L. Peterson and S. J. Rothman, Phys. Rev. 177, 1329 (1969).ADSCrossRefGoogle Scholar
  52. 52.
    F. Liity, Chapter 3 in Physics of Color Centers, edited by W. B. Fowler (Academic Press, New York, 1968).Google Scholar
  53. 53.
    W. Franklin, Phys. Rev. 180, 682 (1969).ADSCrossRefGoogle Scholar
  54. 54.
    D. L. Kirk and P. L. Pratt, Proc. Brit. Ceram. Soc. 9, 215 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Robert G. Fuller
    • 1
  1. 1.Department of PhysicsUniversity of NebraskaLincolnUSA

Personalised recommendations