Advertisement

A New Value of the Fine Structure Constant from Helium Fine Structure

  • Michael L. Lewis

Abstract

For almost half a century, the triplet states of helium have been investigated both theoretically and experimentally by atomic physicists. From the early calculations by Heisenberg1 to the present, the determination of the 23P fine structure splittings have demonstrated the validity of the theory of the interaction of electrons with the electromagnetic field. If one assumes that quantum electrodynamics properly describes the electron-electron interaction in helium, one can use the measured fine structure intervals and the calculated values to precisely determine the fine structure constant α.

Keywords

Fine Structure Anomalous Magnetic Moment Fine Structure Constant Order Energy Fine Structure Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Heisenberg, Z. Phys. 39, 499 (1926).ADSCrossRefGoogle Scholar
  2. 2.
    W.V. Houston, Proc. Nat. Acad. Sci. 13, 91 (1927).ADSCrossRefGoogle Scholar
  3. 3.
    G. Hansen, Nature (London) 119, 237 (1927);ADSCrossRefGoogle Scholar
  4. G. Hansen, Verh. Deut. Phys. Ges. 10, 5 (1929).ADSGoogle Scholar
  5. 4.
    W.F. Meggers, J. Res. Nat. Bur. Stand. 14, 487 (1935).Google Scholar
  6. 5.
    J.A. Gaunt, Phil. Trans. Roy. Soc. London, A 228, 151 (1929).ADSMATHCrossRefGoogle Scholar
  7. 6.
    G. Breit, Phys. Rev. 34, 553 (1929);MathSciNetADSCrossRefGoogle Scholar
  8. G. Breit, Phys. Rev. 36, 383 (1930).ADSCrossRefGoogle Scholar
  9. 7.
    G. Breit, Phys. Rev. 39, 616 (1932).ADSMATHCrossRefGoogle Scholar
  10. 8.
    H.A. Bethe, Hanbuch der Physik, Vol. 24/1, Springer-Verlag, Berlin, 1933.Google Scholar
  11. 9.
    G. Araki, Proc. Phys. Math. Soc. Japan 19, 128 (1937).MATHGoogle Scholar
  12. 10.
    J. Brochard, R. Chabbal, H. Chantrel and P. Jacquinot, J. Phys. Radium 13, 433 (1952).CrossRefGoogle Scholar
  13. 11.
    I. Wieder and W.E. Lamb, Jr., Phys. Rev. 107, 125 (1957).ADSCrossRefGoogle Scholar
  14. 12.
    F.D. Colgrove, P.A. Franken, R.R. Lewis and R.H. Sands, Phys. Rev. Letters 3, 420 (1959).ADSCrossRefGoogle Scholar
  15. 13.
    G. Araki, M. Ohta, and K. Mano, Phys. Rev. 116, 651 (1959).ADSMATHCrossRefGoogle Scholar
  16. 14.
    J. Traub and H.M. Foley, Phys. Rev. 116, 914 (1959).ADSCrossRefGoogle Scholar
  17. 15.
    C. Pekeris, B. Schiff and H. Lifson, Phys. Rev. 126, 1057 (1962).ADSCrossRefGoogle Scholar
  18. 16.
    B. Schiff, C.L. Pekeris and H. Lifson, Phys. Rev. 137, A1672 (1965).ADSCrossRefGoogle Scholar
  19. 17.
    C. Schwartz, Phys. Rev. 134, A1181 (1964).ADSCrossRefGoogle Scholar
  20. 18.
    M. Douglas and N.M. Kroll, Annals of Physics 82, 89 (1974).ADSCrossRefGoogle Scholar
  21. 19.
    V.A. Fock, Kgl. Norske Videnskab. Selskabs. Forh 31, 138 (1958).Google Scholar
  22. 20.
    J. Daley, thesis, University of California, Berkeley.Google Scholar
  23. 21.
    M. Douglas, Phys. Rev. 6, 1929 (1972).ADSCrossRefGoogle Scholar
  24. 22.
    L. Hambro, Phys. Rev. 5, 2027 (1972);ADSGoogle Scholar
  25. L. Hambro, Phys. Rev. 6, 865 (1972);ADSCrossRefGoogle Scholar
  26. L. Hambro, Phys. Rev. 7, 479 (1973).ADSCrossRefGoogle Scholar
  27. 23.
    M.L. Lewis and P.H. Serafino, Bull. Am. Phys. Soc. 18, 1510 (1973).Google Scholar
  28. 24.
    A. Dalgarno and J.T. Lewis, Proc. Roy. Soc. London, A 233, 70 (1973).MathSciNetADSGoogle Scholar
  29. 25.
    J. Daley, M. Douglas, L. Hambro, and N.M. Kroll, Phys. Rev. Letters 29, 12 (1972).ADSCrossRefGoogle Scholar
  30. 26.
    E. Richard Cohen and B.N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Michael L. Lewis
    • 1
  1. 1.J.W. Gibbs LaboratoryYale UniversityNew HavenUSA

Personalised recommendations