Rydberg Constant

  • Theo W. Hänsch


Recent advances in high resolution spectroscopy with tunable lasers have made it possible to determine a new value of the Rydberg constant with an almost tenfold improvement in accuracy over recent other experiments. Our research group at Stanford University, i.e. M. H. Nayfeh, S. A. Lee, S. M. Curry, I. S. Shahin, and myself, has recently completed a measurement of the absolute wavelength of the optically resolved 3D5/2 - 2P3/2 component of the red Balmer line Hα of atomic hydrogen and Dα of deuterium.1 Doppler broadening was eliminated by saturation spectroscopy2 with a pulsed tunable dye laser. An iodine stabilized He-Ne laser served as wavelength standard.3 The same measurements provide a new precise value for the Hα – Dα isotope shift. In addition, the splittings between the stronger fine structure components in the optical spectrum were determined to within a few MHz.


Fundamental Constant High Resolution Spectroscopy Rydberg Constant Marker Resonance Fine Structure Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. W. Hänsch, M. H. Nayfeh, S. A. Lee, S. M. Curry, and I. S. Shahin, Phys. Rev. Letters 32, 1336 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    T. W. Ilansch, I. S. Shahin, and A. L. Schawlow, Nature 253, 63 (1972).Google Scholar
  3. 3.
    W. G. Schweitzer, Jr., E. G. Kessler, Jr., R. D. Deslattes, H. P. Layer, and J. R. Whetstone, Appl. Opt. 12, 2827 (1973).Google Scholar
  4. 4.
    G. W. Series, Contemp. Phys. 14, 49 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    G. W. Series, Proceedings of the International Conference on Precision Measurements and Fundamental Constants, NBS Gaithersburg, August 1970. NBS Spec. Pub. 343, U.S. Dept. of Commerce, pp 73–82.Google Scholar
  6. 6.
    B. N. Taylor, private communication.Google Scholar
  7. 7.
    B. P. Kibble, W. R. C. Rowley, R. E. Shawyer, and G. W. Series, J. Phys. B, 6, 1079 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    E. G. Kessler, Phys. Rev. 7A, 408 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    T. W. Hänsch, Appl. Opt. 11, 895 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    S. M. Curry, R. Cubeddu, and T. W. Hänsch, Appl. Phys. 1, 153 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    J. A. Blackman and G. U. Series, J. Phys. B, 6, 1090 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    H. A. Bethe and E. E. Salpeter, in Encylopedia of Physics, Vol. XXXV, Atoms 1, S. Flügge, ed., Springer-Verlag, Berlin (1957).Google Scholar
  13. 13.
    M. Mizushima, Phys. Rev. 133, A414 (1964).ADSCrossRefGoogle Scholar
  14. 14.
    G. Erickson, to be published.Google Scholar
  15. 15.
    J. D. Garcia and J. E. Mack, J. Opt. Soc. Am. 55, 654 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    T. W. Hänsch, K. C. Harvey, G. Meisel, and A. L. Schawlow, Opt. Comm., 11, 50 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Theo W. Hänsch
    • 1
  1. 1.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations