Many-Body Effects in Atomic Hyperfine Interaction

  • Ingvar Lindgren


Our understanding of the atomic hyperfine interaction has improved considerably during the last ten years, due to important progress experimentally as well as theoretically. The advent of optical resonance and laser methods has made it possible to study a large number of shortlived excited states, and the further development of the atomic-beam method has made many metastable states accessible for experimental study. These experiments have clearly demonstrated that the simple single-particle model is unsufficient to explain the atomic hyperfine interaction, which means that many-body effects have to be taken into account. Our methods of handling many-body problems theoretically have also improved drastically lately. Techniques such as the linked-diagram expansion and the effective-operator formalism have here been found to be extremely useful. The rapid development of electronic computers have furthermore made it possible to apply these fairly complicated methods not only to the lightest atoms. The two previous talks have been mainly concerned with the experimental development in this field, and, therefore, I shall in my talk concentrate on the theoretical side of the problem and try to explain how the experimental results can be interpreted in the light of recent many-body calculations.


Hyperfine Interaction Quadrupole Interaction Effective Operator Alkali Atom Open Shell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Brillouin, Actualités Sci. Ind. No 159 (1934)Google Scholar
  2. 2.
    A. Abragam and M.H.L. Pryce, Proc. Roy. Soc. A205, 135 (1951)ADSMATHCrossRefGoogle Scholar
  3. 3.
    V. Heine, Phys. Rev. 107, 1002 (1957)MathSciNetADSCrossRefGoogle Scholar
  4. J.H. Wood and G.W. Pratt, Phys. Rev. 107, 995 (1957)ADSMATHCrossRefGoogle Scholar
  5. 4.
    I. Lindgren and A. Rosen, Case Studies in Atomic Physics, 4, 93 (1974)Google Scholar
  6. 5.
    A.J. Freeman and R. Watson, Phys. Rev. 132, 706 (1963)ADSCrossRefGoogle Scholar
  7. 6.
    P.G.H. Sandars and J. Beck, Proc. Roy. Soc. A289, 97 (1965)ADSCrossRefGoogle Scholar
  8. 7.
    J.S.M. Harvey, Proc. Roy. Soc. A285, 581 (1965)ADSCrossRefGoogle Scholar
  9. 8.
    R.K. Nesbet, Adv. Chem. Phys. 14, 1 (1969);CrossRefGoogle Scholar
  10. R.K. Nesbet Phys. Rev. A2, 661 (1970)ADSCrossRefGoogle Scholar
  11. 9.
    H.P. Kelly, Adv. Chem. Phys. 14, 129 (1969)CrossRefGoogle Scholar
  12. J.D. Lyons, R.T. Pu, and T.P. Das, Phys. Rev. 178, 103 (1969)ADSCrossRefGoogle Scholar
  13. T. Lee, N.C. Dutta, and T.P. Das, Phys. Rev.Al 995 (1970)ADSGoogle Scholar
  14. 10.
    K.A. Brueckner, Phys. Rev. 100, 36 (1955)ADSMATHCrossRefGoogle Scholar
  15. J. Goldstone, Proc. Roy. Soc. A239, 267 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 11.
    B.H. Brandow, Rev. Mod. Phys. 29, 771 (1967)ADSCrossRefGoogle Scholar
  17. 12.
    P.G.H. Sandars, Adv. Chem. Phys. 14, 365 (1969)CrossRefGoogle Scholar
  18. 13.
    I. Lindgren, J. Phys. B. (to appear)Google Scholar
  19. 14.
    R.M. Sternheimer, Phys. Rev. A3, 837 (1971); A9, 1783 (1974)CrossRefGoogle Scholar
  20. 15.
    V. McKoy and N.W. Winter, J. Chem. Phys. 48, 5514 (1968)ADSCrossRefGoogle Scholar
  21. N.W. Winter, A. Laferriére and V. McKoy, Phys. Rev. A2, 49 (1970)ADSGoogle Scholar
  22. J.I. Musher and J.M. Schulman, Phys. Rev. 173, 93 (1968)ADSCrossRefGoogle Scholar
  23. 16.
    A.P.Yutsis, I.B. Levinson, and V.V. Vanagas, Mathematical Apparatus of the Theory of Ahgular Momentum, (Israel Program for Sci. Transi., Jerusalem, 1962 )Google Scholar
  24. 17.
    J.C. Slater, Phys. Rev. 165, 655 (1968)ADSCrossRefGoogle Scholar
  25. C.H. Froese-Fisher, Chem. Phys. 45, 1417 (1966);ADSGoogle Scholar
  26. C.H. Froese-Fisher Computer Physics Comm. 1, 151 (1970)ADSCrossRefGoogle Scholar
  27. 18.
    J.M. Schulman and W.S. Lee, Phys. Rev. A5, 13 (1972)ADSCrossRefGoogle Scholar
  28. 19.
    S. Garpman, I. Lindgren, J. Lindgren and J. Morrison, submitted to Phys. Rev. and unpublished works.Google Scholar
  29. 20.
    R. Gupta, S. Chang and W. Happer, Phys. Rev. A6, 529 (1972)ADSCrossRefGoogle Scholar
  30. R. Gupta, W. Happer, L.K. Lam and S. Svanberg, Phys. Rev. A8, 2792 (1973)ADSCrossRefGoogle Scholar
  31. S. Svanberg, P. Tsekeris and W. Happer, Phys Rev. Lett 30, 817 (1973)ADSCrossRefGoogle Scholar
  32. K.H. Liao, L.K. Lam, R. Gupta and W. Happer, Phys Rev. Lett. 32, 1340 (1974). See also the paper by W. Happer, p. 651 in this volume, for further references.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ingvar Lindgren
    • 1
  1. 1.Department of PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations