Highly Excited States of Helium and Neon

  • W. H. Wing
  • K. R. Lea
  • W. E. LambJr.
Conference paper


For the past two years we have been studying the microwave spectra of the high states of singly excited helium1,2,3 and very recently have observed microwave resonances in highly excited neon as well.4 The story of how we got into this field, more or less by accident, has been given in Ref. 2, along with a survey of highly excited state phenomena.


Excited State Polarization Model Quantum Defect Microwave Spectrum Microwave Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Wing, D. L. Mader, and W. E. Lamb, Jr., Bull. Amer. Phys. Soc. 16, 531 (1971).Google Scholar
  2. 2.
    W. E. Lamb, Jr., D. L. Mader, and W. H. Wing, Proceedings of the Esfahan Symposium on Fundamental and Applied Laser Physics (to be published).Google Scholar
  3. 3.
    W. H. Wing and W. E. Lamb, Jr., Phys. Rev. Letters 28, 265 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    K. R. Lea, unpublished data.Google Scholar
  5. 5.
    M. J. Seaton, Rev. Mod. Phys. 30, 979 (1958); Proc. Phys. Soc. London, 88 815 (1966).Google Scholar
  6. 6.
    C. E. Moore, Atomic Energy Levels (National Bureau of Standards Circular No. 467t 1949 ), Vol. I.Google Scholar
  7. 7.
    W. C. Martin, J. Res. Natl. Bur. Std. (U.S.) A 64, 79 (1960).Google Scholar
  8. 8.
    W. E. Lamb, Jr., and T. H. Maiman, Phys. Rev. 105, 573 (1957); J. P. Descoubes, in Physics of the One- and Two-Electron Atoms, edited by F. Bopp and H. Kleinpoppen (North-Holland, Amsterdam, 1969), p. 341; A. Kponou, V. W. Hughes, C. E. Johnson, S. A. Lewis, and F. M. J. Pichanick, Phys. Rev. Lett. 26, 1613 (l97l), and many others.Google Scholar
  9. 9.
    J. S. Levine and A. Javan, Appl. Phys. Lett. 14, 348 (1969). A precise measurement of the 95.8-pm transition frequency has been made by J. S. Levine, A. Sanchez, and A. Javan, to be published.Google Scholar
  10. 10.
    Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957) and H. A. Bethe, Quantenmechanik der Ein- und Zwei-Elektronen Probleme2019; in Handbuch der Physik, edited by H. Geiger and K. Scheel, (Springer, Berlin, 1933), Vol. 24/1.Google Scholar
  12. 12.
    M. J. Seaton, second article in Ref. 5.Google Scholar
  13. 13.
    B. Edlén, in Encyclopedia of Physics, edited by S. Flugge (Springer, Berlin, 1964)1 Vol. 27, Sees. 10 and 33- A more detailed treatment of the polarization model for helium has been given by C. Deutsch. Phys. Rev. A 2, 43 (1970), and 3 1516(E) (1971).Google Scholar
  14. 14.
    W. C. Martin, J. Res. Nat. Bur. Std. (U.S.) A 74, 699 (1970).Google Scholar
  15. 15.
    W. E. Lamb, Jr., and T. M. Sanders, Jr., Phys. Rev. 119, 1901 (I960); L. R. Wilcox and W. E. Lamb, Jr., Phys. Rev. 119, 1915 (1960).Google Scholar
  16. 16.
    S. L. Kaufman, W. E. Lamb, Jr., K. R. Lea, and M. Leventhal, Phys. Rev. A 4, 2128 (1971); R. R. Jacobs, K. R. Lea, and W. E. Lamb, Jr., Phys. Rev. A 3, 884 (l97l)t D. L. Mader, M. Leventhal, and W. E. Lamb, Jr., Phys. Rev. A 1832 (1971).Google Scholar
  17. 17.
    G. Araki, Proc. Phys. Math. Soc. Jap. 19, 128 (1937).MATHGoogle Scholar
  18. 18.
    T. O. Siu, unpublished.Google Scholar
  19. 19.
    R. M. Parish and R. W. Mires, Phys. Rev. A 4, 2145 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    V. Kaufman and L. Minnhagen, J. Opt. Soc. Am. 62, 92 (1972).ADSCrossRefGoogle Scholar
  21. 21.
    At high enough n this approximation is no longer sufficient. A complete solution of the multiple-level time-dependent perturbation problem with damping, rf, and the ensemble distribution of perturbation strengths appears formidable to us. At very high n, the perturbations couple all levels together strongly and the secular equation becomes infinite in dimension.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • W. H. Wing
    • 1
  • K. R. Lea
    • 1
  • W. E. LambJr.
    • 1
  1. 1.Department of PhysicsYale UniversityNew HavenUSA

Personalised recommendations