Advertisement

Saturated Absorption Spectroscopy with Applications to the 3.39 μm Methane Transition

  • J. L. Hall

Abstract

In basic research we are grateful to be able to pursue research in profitable directions, e.g., those directions where the boundaries of experimental or theoretical possibilities seem most susceptible to growth. Of course we know of some areas that could be investigated and many numerical data recorded, but we are uneasy in not knowing how to make use of the data. As physicists we especially like to make progress synthesizing specialized concepts into more general forms. We savor the similarities -- and differences -- when ideas developed in one area prove useful in another set of circumstances. Just now it is optical resonance physics that seems to be ripe for explosive growth using new laser techniques and “classical” resonance ideas. This paper represents a direct effort to sketch, in the opinion of a certain class of partisans, “where the action is.” We begin with a brief discussion of experiments in which a laser is useful but not necessary, and a consideration of the basic optical facts of life. The bulk of the paper explores the exciting land beyond the Doppler limit.

Keywords

Line Width Saturated Absorption Laser Frequency Frequency Stability Stark Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. Colegrove, P. A. Franken, R. R. Lewis and R. H. Sands, Phys. Rev. Lett. 3, 420 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    J. Brossel, P. Sagalyn and F. Bitter, Phys. Rev. 7, 225A (1950).Google Scholar
  3. 3.
    W. R. Bennett, Jr., Phys. Rev. 126, 580 (1962).ADSCrossRefGoogle Scholar
  4. 4.
    E. I. Gordon, A. D. White and J. D. Rigden, Optical Masers (Brooklyn Polytechnic Press, 1963 ), pp. 309–18.Google Scholar
  5. 5.
    A. M. Portis, Phys. Rev. 104, 584 (1956).ADSCrossRefGoogle Scholar
  6. 6.
    Acronymn for Electron-Electron Double Resonance.11Google Scholar
  7. 7.
    H. R. Schlossberg and A. Javan, Phys. Rev. 150, 267 (1966); R. G. Brewer, “Nonlinear Spectroscopy,” lecture at Ettore Majorana International School of Quantum Electronics, Erice, Sicily, April 16–29, 1972 (to appear in Science, Oct. 20, 1972 ). I am indebted to Dr. Brewer for making a preprint of this article available.Google Scholar
  8. 8.
    T. Hansch and P. Toschek, IEEE J. Quant. Electron. QE4, 467 (1968).Google Scholar
  9. 9.
    H. K. Holt, Phys. Rev. Lett. 19, 1275 (1967); G. E. Notkin, S. G. Rautian and A. A. Feoktistov, Sov. Phys.-JETP 25, 1112 (1967).Google Scholar
  10. 10.
    W. R. Bennett, Jr., Appl. Opt. Suppl. 19 24 (1962), and in Quantum Electronics III, Paris 1963, P. Grivet and N. Bloembergen, ( Columbia Univ. Press, N.Y., 1964 ), pp. 442–58.Google Scholar
  11. 11.
    W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964), also in Quantum Electronics and Coherent Light, P. A. Miles, ed. ( Academic Press, N.Y., 1964 ), p. 78.Google Scholar
  12. 12.
    J. L. Hall, IEEE J. Quant. Electron. QE-4, 638 (1968). One of the first Lamb dip studies was by A. Szoke and A. Javan, Phys. Rev. Lett. 10, 921 (1963).Google Scholar
  13. 13.
    Yu. A. Matyugin, A. C. Provorov and V. P. Chebotayev, Influence of Radiation Trapping on Spectral Profiles in Neon, 11 Academy of Seiendes (USSR), Siberian Branch, Institute of Physics of Semiconductors, Preprint 20, Novosibirsk 1972.Google Scholar
  14. 14.
    P. H. Lee and M. L. Skolnick, Appl. Phys. Lett. 10, 303 (1967). The same concept was pursued in the USSR by N. G. Basov and V, S. Letokhov at the Lebedev Institute and by V. P. Chebotayev and V. N. Lisitsyn in Novosibirsk.Google Scholar
  15. 15.
    V. N. Lisitsyn and V. P. Chebotayev, Sov. Phys.-JETP 27, 227 (1968).ADSGoogle Scholar
  16. 16.
    See Ref. 4 of Ref. 17 and S. N. Bagaev, Yu. D. Kolomnikov, V. N. Lisitsyn and V. P. Chebotayev, IEEE J. Quant. Electron. QE4, 868 (1968).Google Scholar
  17. 17.
    R. L. Barger and J. L. Hall, Phys. Rev. Letters 22, 4 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    K. Sakurai, Y. Ueda, M. Takami and K. Shimoda, J. Phys. Soc. Japan 21, 2090 (1966).ADSCrossRefGoogle Scholar
  19. 19.
    J. L. Hall, in Lectures in Theoretical Physics (1969) K. T. Mahanthappa and W. E. Brittin (Gordon and Breach, N.Y., in press).Google Scholar
  20. 20.
    Experiments of this type, performed in 1970 in collaboration with R. L. Barger, showed anomalously large pressure-broadening effects which still are not well understood.Google Scholar
  21. 21.
    For other good saturation candidates, see the tables by C. B. Moore, in Fluorescence: Theory, Instrumentation and Practice, G. G. Guilbault, ed. (M. Dekker, N.Y., 1967); pp. 133–53; also L. B. Kreuzer, N. D. Keryon and C. K. N. Patel, Science 177, 347 (1972).Google Scholar
  22. 22.
    W. Demtröder, M. McClintock and R. N. Zare, J. Chem. Phys. 51, 5495 (1969).ADSCrossRefGoogle Scholar
  23. 23.
    S. E. Johnson, K. Sakurai and H. P. Broida, J. Chem. Phys. 52, 6441 (1970).ADSCrossRefGoogle Scholar
  24. 24.
    W. J. Tango, J. K. Link and R. N. Zare, J. Chem. Phys. 49, 4264 (1968).ADSCrossRefGoogle Scholar
  25. 25.
    R. M. McClintock and L. C. Balling, Bull. Am. Phys. Soc., 55 (1968).Google Scholar
  26. 26.
    S. Ezekiel and R. Weiss, Phys. Rev. Lett. 20, 91 (1968); R. B. Kurzel and J. I. Steinfeld, J. Chem. Phys. 53, 3293 (1970); nonlinear spectroscopy in both I2 isotopes, see M. D. Levenson and A. L. Shawlow, Phys. Rev. A 6, 10 (1972).Google Scholar
  27. 27.
    T. W. Hänsch, M. D. Levenson and A. L. Shawlow, Phys. Rev. Lett. 26, 946 (1971).ADSCrossRefGoogle Scholar
  28. 28.
    G. R. Hanes and C. E. Dahlstrom, Appl. Phys. Lett. 362 (1969); and Ref. 29.Google Scholar
  29. 29.
    J. D. Knox and Y. M. Pao, Appl. Phys. Lett. 18, 360 (1971).ADSCrossRefGoogle Scholar
  30. 30.
    R. S. Eng and J. T. LaTourrette, Bull. Am. Phys. Soc. 16, 43 (1971); R. S. Eng, Thesis, Polytechnic Institute of Brooklyn, 1971.Google Scholar
  31. 31.
    K. Sakurai and H. P. Broida, J. Chem. Phys. 5, 2404 (1969).ADSCrossRefGoogle Scholar
  32. 32.
    K. Uehara, T. Shimizu and K. Shimoda, IEEE J. Quant. Electron, QE4, 728 (1968). This reference reports many Stark effect data.Google Scholar
  33. 33.
    Zeeman-tuned (linear) laser spectroscopy: H. J. Gerritsen and M. E. Heller, Appl. Opt. Suppl. 2, 73 (1965); H. J. Gerritsen, in Physics of Quantum Electronics, P. L. Kelly, B. Lax and P. E. Tannenwald (McGraw-Hill, N.Y., 1966). See also K. Sakurai and K. Shimoda, Japan J. Appl. Phys..5, 744 (1966).Google Scholar
  34. 34.
    Nonlinear spectroscopy: A. C. Luntz, R. G. Brewer, K. L. Foster and J. D. Swalen, Phys. Rev. Lett. 23, 951 (1969); A. C. Luntz and R. G. Brewer, J. Chem. Phys. 54, 3641 (1971).CrossRefGoogle Scholar
  35. 35.
    Identification by G. Poussige, N. Husson, M. Dang Nhu and L. Henry (private communcation, Nov. 1971 ). Saturation spectroscopy reported in Ref. 36.Google Scholar
  36. 36.
    J. A. Magyar and J. L. Hall, Bull. Am. Phys. Soc. 17, 67 (1972). The number of discrete saturation resonances within 3 GHz is shown - many of the lines show additional structure 0.5 MHz.Google Scholar
  37. 37.
    A. C. Luntz, J. D. Swalen and R. G. Brewer, J. Chem. Phys. Lett. 14, 512 (1972). Identification is for the line at 4–2.25 GHz relative to methane. Three other lines observed, one provisionally identified.Google Scholar
  38. 38.
    K. Sakurai, K. Uehara, M. Takami and K. Shimoda, J. Phys. Soc. Japan 23, 103 (1967).ADSCrossRefGoogle Scholar
  39. 39.
    A. W. Mantz, E. R. Nichols, B. D. Alpert and K. N. Rao, J. Mol. Spectry. 35, 325 (1970); A. Kaldor, W. B. Olson and A. G. Maki, Science 176, 508 (1972).Google Scholar
  40. 40.
    H. Bunet, IEEE J. Quant. Electron. QE2, 382 (1966).Google Scholar
  41. 41.
    R. G. Brewer, M. J. Kelly and A. Javan, Phys. Rev. Lett. 23, 559 (1969); R. G. Brewer and J. D. Swalen, J. Chem. Phys. 52, 2774 (1970).ADSCrossRefGoogle Scholar
  42. 42.
    M. J. Kelly, R. E. Francke and M. S. Feld, J. Chem. Phys. 53, 2979 (1970).ADSCrossRefGoogle Scholar
  43. 43.
    R. G. Brewer, Phys. Rev. Lett. 25, 1639 (1970).ADSCrossRefGoogle Scholar
  44. 44.
    F. Shimizu, J. Chem. Phys. 52, 3572 (1970), about 100 other Stark-tunable coincidences with C01 and NO2 lasers are given along with transition identification; F. Shimizu, J. Chem. Phys. 53, 1149 (1970) gives about 95 such identified coincidences for 15NH3. M. Ouhayoun and C. Bordé, Compt. Rend., Acad. Sci. Paris 274, 411 (1972), report Stark effect on the NH3 aQ(8,7) using saturation methods.Google Scholar
  45. 45.
    P. Rabinowitz, R. Keller and J. T. LaTourrette, Appl. Phys. Lett. 14, 376 (1969). See also Ref. 48 for 7 CO2 laser tran-sitions and 8 N2O laser transitions that overlap SF.Google Scholar
  46. 46.
    C. Freed and A. Javan, Appl. Phys. Lett. 17., 53 (1970).Google Scholar
  47. 47.
    F. R. Peterson and B. L. Danielson, Bull. Am. Phys. Soc. 15, 1324 (1970).Google Scholar
  48. 48.
    C. Bordé, Compt. Rend., Acad. Sci. Paris 271, 371 (1970).Google Scholar
  49. 49.
    J. L. Hall, in Proceedings of the Esfahan Symposium on Basic and Applied Laser Physics, M. S. Feld, N. A. Kurnitt and A. Javan, (Wiley, N.Y., in press).Google Scholar
  50. 50.
    J. L. Hall, Accuracy Capability of Saturated Absorption: The Prognosis for Optical Frequency Standards,11 to be published.Google Scholar
  51. 51.
    D. Allan, Proc. IEEE 54, 221 (1966).CrossRefGoogle Scholar
  52. 52.
    A. Javan, E. A. Ballik and W. D. Bond, J. Opt. Soc. Am. 52, 96 (1962); A. Szoke and A. Javan, Phys. Rev. Lett. 10, 521 (1963); J. L. Hall and W. W. Morey, Appl. Phys. Lett. 10, 152 (1967); J. A. Magyar and J. L. Hall, Bull. Am. Phys. Soc. 17, 67 (1972).Google Scholar
  53. 53.
    J. Levine and J. L. Hall, J. Geophys. Res. 77, 2595 (1972).ADSCrossRefGoogle Scholar
  54. 54.
    J. L. Hall and R. L. Barger, Bull. Am. Phys. Soc. JL 7, 67 (1972), and in Ref. 49.Google Scholar
  55. 55.
    For example, see T. S. Jaseja, A. Javan, J. Murray and C. H. Townes, Phys. Rev. 133, A1221 (1964).ADSCrossRefGoogle Scholar
  56. 56.
    See, for example, Refs. 12, 49, and 57.Google Scholar
  57. 57.
    E. E. Uzgiris, J. L. Hall and R. L. Barger, Phys. Rev. Lett. 26, 289 (1971).ADSCrossRefGoogle Scholar
  58. 58.
    The computing skill and insight of J. Levine have been essential to this work; we thank him vigorously.Google Scholar
  59. 59.
    No totally satisfactory theory of this effect is yet available. See, for example, A. P. Kolfchenko, S. G. Rautian and R. I. Sokolovskii, Soc. Phys.-JETP 28, 968 (1969).Google Scholar
  60. 60.
    W. R. Bennett, Jr., Ref. 10 and Comm. Atom. Mol. Phys. 2, 10 (1970).Google Scholar
  61. 61.
    The aperture-dependent selective effects operating in these collisions have been discussed in Ref. 19, and by J. L. Hall, in Sixth International Conference on Electronic and Atomic Collisions: Abstracts of Papers ( MIT Press, Cambridge, Mass., 1969 ), pp. 994–6.Google Scholar
  62. 62.
    K. M. Evenson, G. W. Day, J. S. Wells and L. O. Mullen, Appl. Phys. Lett. 20, 133 (1972). The pioneering experiments of this type were done by A. Javan and his colleagues at MIT; see for example L. O. Hocker, A. Javan, D. R. Rao, L. Frenkel and T. Sullivan, Appl. Phys. Lett. 10, 5 (1967).Google Scholar
  63. 63.
    K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson and G. W. Day, Appl. Phys. Lett, (submitted).Google Scholar
  64. 64.
    K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, R. L. Barger and J. L. Hall, Phys. Rev. Lett. (to appear Nov. 6, 1972 ).Google Scholar
  65. 65.
    R. L. Barger and J. L. Hall, Appl. Phys. Lett, (submitted); and paper in preparation.Google Scholar
  66. 66.
    R. L. Barger and J. L. Hall, in Precision Measurements and Fundamental Constants, Proc. of the International Conference held at Gaithersberg, Md., August, 1970. Nat. Bur. Std. Spec. Publ. 343. Note that the preliminary wavelength value reported here was not yet corrected for several systematic offsets.Google Scholar
  67. 67.
    W. R. C. Rowley and J. Hamon, Rev. df0pt. 42, 519 (1963).Google Scholar
  68. 68.
    J. L. Hall, IEEE J. Quant. Electron. QE4, 638 (1968).Google Scholar
  69. 69.
    D. A. Halford, H. Hellwig and J. S. Wells, Proc. IEEE 60, 623 (1972).ADSCrossRefGoogle Scholar
  70. 70.
    I. D. Abella, N. A, Kurnitt and S. R. Hartmann, Phys. Rev. 141, 391 (1966).Google Scholar
  71. 71.
    J. P. Gordon, C. H. Wang, C. K. N. Patel, R. E. Slusher and W. J. Tomlinson, Phys. Rev. 179, 294 (1969).ADSCrossRefGoogle Scholar
  72. 72.
    B. Böiger and J. C. Diels, Phys. Lett. 28A, 401 (1968).Google Scholar
  73. 73.
    R. G. Brewer and R. L. Shoemaker, Phys. Rev. Lett. 27, 631 (1971).ADSCrossRefGoogle Scholar
  74. 74.
    R. L. Shoemaker and R. G. Brewer, Bull. Am. Phys. Soc. 17, 67 (1972).Google Scholar
  75. 75.
    R. L. Shoemaker and R. G. Brewer, Phys. Rev. Lett. 28, 1430 (1972).ADSCrossRefGoogle Scholar
  76. 76.
    J. L. Hall and G. Kramer, to be published.Google Scholar
  77. 77.
    A. Abragam, The Principles of Nuclear Magnetism (Oxford Univ. Press, 1961), p. 22ff. IGoogle Scholar
  78. 78.
    Unfortunately, relative to the “Neoclassical Electromagnetic Theory” vs “Quantum Electrodynamics” controversy, we also have the rest of the Doppler profile to contribute opacity with an unresolvably fast response speed ~ 1/πΔνD ~ 1 nsec.Google Scholar
  79. 79.
    R. F. Shea, F. A. Hopf and M. O. Scully, quoted in Ref. 75.Google Scholar
  80. 80.
    G. Kramer, to be published.Google Scholar
  81. 81.
    R. P. Feynman, F. L. Vernon, Jr. and R. W. Hellwarth, J. Appl. Phys. 28, 49 (1957).ADSCrossRefGoogle Scholar
  82. 82.
    See, for example, Ref. 11, or Elements of Nuclear Reactor Design, S. Glasstone and M. C. Edlund (Van Nostrand, N.Y., 1952), p. 90ff.Google Scholar
  83. 83.
    H. C. Torrey, Phys. Rev. 76, 1059 (1949).ADSMATHCrossRefGoogle Scholar
  84. 84.
    G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).,Google Scholar
  85. 85.
    Ref. 77, p. 58ff.Google Scholar
  86. 86.
    H. Kogelnik and T. Li, Appl. Opt. 5., 1550 (1966).Google Scholar
  87. 87.
    N. F. Ramsey, Phys. Rev. 76, 996 (1948), and in Molecular Beams (Oxford Univ. Press, 1956), p. 124ff.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • J. L. Hall
    • 1
    • 2
  1. 1.Joint Institute for Laboratory AstrophysicsUniversity of ColoradoBoulderUSA
  2. 2.Laboratory Astrophysics DivisionNational Bureau of StandardsUSA

Personalised recommendations