Theories of the Fine Structure Constant α

  • Stephen L. Adler
Conference paper


Although the fine structure constant is one of the best determined numbers in physics, the reason why nature selects the particular value α = 1/137. 03602 ± 0. 00021 for the electromagnetic coupling strength is still a mystery, and has provoked much interesting theoretical speculation. For purposes of discussion, the speculations may be divided roughly into four general types: (a) Theories in which α is cosmologically determined; (b) Theories in which α is a constant which is determined microscopically through the interplay of the electromagnetic interaction with interactions of other types, either gravitational, weak or strong; (c) Theories in which α is microscopically determined through properties of the electromagnetic interaction alone, considered in isolation from other interactions; and (d) Numerological speculations.


Vacuum Polarization Renormalization Constant Fine Structure Constant Eigenvalue Condition Wave Function Renormalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Gamow, Phys. Rev. Letters 19, 759 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    L. D. Landau, On the Quantum Theory of Fields, in Niels Bohr and the Development of Physics, W. Pauli, ed. (Pergamon Press, London, 1955); B, S. DeWitt, PhySo Rev. Letters 13, 114 (1964); A. Salam and J. Strathdee, Nuovo Cimento Letters 4, 101 (1970).Google Scholar
  3. 3.
    For an excellent review see F. J0 Dyson, “The Fundamental Constants and their Time Variation”, Institute for Advanced Study preprint (1972).Google Scholar
  4. 4.
    C. J. Isham, A. Salam & J. Strathdee, Phys. Rev. D3, 1805 (1971).MathSciNetADSGoogle Scholar
  5. 5.
    J. Shechter and Y. Ueda, Phys. Rev. D2, 736 (1970); T. D. Lee, Phys. Rev. Letters 26, 801 (1971).Google Scholar
  6. 6.
    S. Weinberg, Phys. Rev. Letters 19, 1264 (1967) and 27, 1688 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    K. Johnson, M. Baker and R. Willey, Phys. Rev. 136B, 111 (1964); Ko Johnson, R. Willey and M. Baker, ibid 163, 1699 (1967); M. Baker and K. Johnson, ibid 183, 1292 (1969); M. Baker and K. Johnson, ibid D3, 2516, 2541 (1971).Google Scholar
  9. 9.
    Their result is based on an application of the Jost-Schroer- Federbush-Johnson theorem. See P. G. Federbush and K. Johnson, Phys. Rev. 120, 1296 (I960); and R. Jost, in Lectures on Field Theory and the Many-Body Problem, E. R. Caianiello, ed. ( Academic Press, N. Y., 1961 ).Google Scholar
  10. 10.
    S. Adler, “Short Distance Behavior of Quantum Electrodynamics and an Eigenvalue Condition for α”, Phys. Rev. (to be published).Google Scholar
  11. 11.
    See e. go D. J. Gross and S. B. Treiman, Phys. Rev, D4, 1059 (1971).ADSGoogle Scholar
  12. 12.
    Fourth order calculation: R. Jost and J. M. Luttinger, Helv. Phys. Acta 23, 201 (1950). Sixth order calculation: J. L. R. sner, Phys. Rev. Letters 17, 1190 (1966) and Ann. Phys. (N. Y.) 44, 11 (1967).Google Scholar
  13. 13.
    For a review of conformal invariance in field theory, see e. g. G. Mack and A. Salam, Ann. Phys. (N. Y.)53, 174(1969).Google Scholar
  14. 14.
    J. A. Wheeler (unpublished).Google Scholar
  15. 15.
    A. Wyler, C. Ro Acad. Sci., Ser.A 269, 743 (1969) and 271, 186 (1971). For discussions of this formula, see B. Robertson, Phys. Rev. Letters 27, 1545 (1971) and R. Gilmore, ibid 28, 462 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Stephen L. Adler
    • 1
    • 2
  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.National Accelerator LaboratoryBataviaUSA

Personalised recommendations