Advertisement

Electronic Polarization Behavior in Collisions

  • Benjamin Bederson
Conference paper

Abstract

The literature on electronic polarization behavior in atomic collisions was relatively sparse, up to a few years ago. This situation has now changed, and there is no difficulty in encountering comprehensive review papers on this subject. Some of these are listed in reference 1. These proceedings also contain a review by Professor Kessler on polarized electron sources,2 which of necessity includes discussion of the physical processes in atomic collisions which underlie most of present polarized beam source technology.

Keywords

Total Cross Section Differential Cross Section Atom Beam Excitation Cross Section Atomic Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Some earlier review papers, and papers of general interest in this subject include: “Production of Polarized Electron Beams”, K. Jost and H.D. Zeman, HEPL-590, Stanford University, Palo Alto, Cal,, April 1969; “Electron Spin Polarization by Low Energy Scattering”, J, Kessler, Rev. Mod. Phys., 41, 3 (1969); “Polarized Electrons”, W. Raith, Atomic Physics [iCAP- I], edited by B. Bederson, V. W. Cohen and F. M. Pichanick9 Plenum Press, pp. 389–415 (1969); “Polarization effects in elastic electron scattering” (in German), W. Eckstein, Institut Fur Plasmaphysik, Garching, Germany IPP 7/1 Feb. 1970; “Electron Spin Polarization”, P. S. Farago, Reports on Progress in Physics, 34, 1055 (1971); “Polarized Electrons and Some of their Uses,” V. W. Hughes, International Conference on Polarized Targets, Lawrence Berkeley Lab., Univ. of California Aug. 1971. Review papers on related subjects were presented at one of the precursors of the present Conference series, the International Symposium on the Physics of One- and Two-Electron Atoms, held in Munich 1968. These include articles by P. S. Farago and H. Chr. Siegmann, W. Raith, E. Reichert and H. Kleinpoppen [North-Holland Publ. Co., Amsterdam 1969, edited by Bopp and Kleinpoppen]. See also reference 2. For general discussions of the types of information obtainable in collision experiments in the alkalis involving polarized collision partners, see H. Kleinpoppen, Phys. Rev. A3, 2015 (1971); also a series of articles by B. Bederson in Comments on Atomic and Molecular Physics: 41 (1969); I, 65 (1969); II, 160 (1970–71).Google Scholar
  2. 2.
    Polarized Electron Sources, J. Kessler, these proceedings.Google Scholar
  3. 3.
    A. Temkin, Phys. Rev. 107, 1004 (1957); 121, 788 (1961).ADSCrossRefGoogle Scholar
  4. 4.
    W. R. Garrett and R. A. Mann, Phys. Rev. 130, 658 (1963); 135, A580 (1964); W. R. Garrett, Phys. Rev. 140, A705 (1965).CrossRefGoogle Scholar
  5. 5.
    P. M. Stone and J. R. Reitz, Phys. Rev. 131, 2101 (1963).ADSCrossRefGoogle Scholar
  6. 6.
    J. C. Crown and A. Russek, Phys. Rev. 138, A669 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    L. C. Balling, Phys. Rev. 179, 78 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    V. K. Lan, J. Phys. B: Atom. Molec. Phys. 4, 658 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    It should also be noted, as has often been pointed out, that the alkalis do represent a special case where convergence in any excited state expansion is particularly favorable. This is due primarily to the relatively weak binding of the valence electron, which results in the atomic polarizability being attributable almost completely to the first excited (resonant) transition ns → np. Other atomic systems do not possess such a fortuitous property and therefore in general will require more elaborate expansions. We thank Dr. Temkin for his comments on this point.Google Scholar
  10. 10.
    See, for example, The Theory of Atomic Collisions, Third Edition, N. F. Mott and H. S. W. Massey (Oxford U. Press, 1965), p. 524 ff.; Mo J. Seaton, in Atomic and Molecular Processes, ed. by D. R. Bates (Academic Press, N.Y., 1962), pp. 374–420; P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962); P. G. Burke and K. Smith, Rev. Mod. Phys. 3, 458 (1962); P. G. Burke, A. Hibbert and W. D. Robb, J. Phys. B: Atom. Molec. Phys. 4, 153 (1971).Google Scholar
  11. 11.
    E. M. Karule and R. K. Peterkop, Atomic Collisions III, ed. by V. Ia Veldre, Latvian Academy of Sciences, Riga, 1965 (Translation TT-66-12939 available through SLA Translation Center, John Crear Library, Chicago); p. 1-27 (inelastic and elastic collisions above ns-np threshold); E. M. Karule, ibid., p. 29–48 (elastic collisions below threshold).Google Scholar
  12. 12.
    P. G. Burke and A. J. Taylor, J. Phys. B: Atom. Molec. Phys., 2, 869 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    D. W. Norcross, J. Phys. B: Atom. Molec. Phys. 2, 1300 (1969); Corrig. 4, 628 (1971); 4, 1458 (1971); D. L. Moores and D. W. Norcross, J. Phys. B, in press [Tables of Li and Na elastic scattering results].Google Scholar
  14. 14.
    See M. J. Seaton in Atomic and Molecular Processes, reference 10.Google Scholar
  15. 15.
    U. Fano, Phys. Rev. 178, 131 (1969); V. W. Hughes, R. L. Long Jr., M. S. Lubell, M. Posner and W. Raith, Phys. Rev. 5, A195, (1972); G. Baum, M. S. Lubell and W. Raith, Phys. Rev. Lett. 25, 267 (1970); also “Polarized Electrons”, W. Raith (reference 1).Google Scholar
  16. 16.
    Photodetachment of Li and Na, D. W. Norcross and D. L. Moores, these proceedings.Google Scholar
  17. 17.
    N. Fuetrier, H. Van Regemorter and V. K. Lan, J. Phys. B: Atom. Molec. Phys. 4, 670 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    R. E. Collins, B. Bederson and M. Goldstein, Phys. Rev. 3, A1976 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    P. J. Visconti, J. A. Slevin and K. Rubin, Phys. Rev. 3 A1310 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    Absolute Total Cross Sections for Electron Scattering by Light Alkalis, A. Kasdan, T. M. Miller and B. Bederson, Book of Abstracts, ICAP III (Boulder, 1972 ).Google Scholar
  21. 21.
    See, for example, K. Rubin, B. Bederson, M. Goldstein and R. E. Collins, Phys. Rev. 182, 201 (1969); Methods of Experimental Physics, edited by B. Bederson and W. L. Fite. (Academic Press, Inc., New York 1968) Vol. 7A, pp. 89–95; B. Bederson and L. J. Kieffer, Rev. Mod. Phys. 43, 601 (1971) pp. 610–613.Google Scholar
  22. 22.
    R. B. Brode, Phys. Rev. 34, 673 (1929).ADSCrossRefGoogle Scholar
  23. 23.
    It should also be noted that recent polarized-orbital calculations have also been reasonably successful in predicting total cross sections. For example, see Visconti etal [ref. 19] for a comparison of total e-Rb scattering with Balling’s polarized orbital calculation [ref. 17]. However it should be noted that the Balling calculation represents elastic scat¬tering only in this comparison.Google Scholar
  24. 24.
    W. Gehenn and M. Wilmers, Z. Physik 244, 395 (1971).ADSCrossRefGoogle Scholar
  25. 25.
    D. Hils, M. V. McCusker, H. Kleinpoppen and S. J. Smith, Phys. Rev. Lett. 29, 398 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    The Gehenn and Wilmers results also agree very well, when normalized, to Karule and Peterkop, and to the old recoil data of Rubin etal [K. Rubin, J. Perel and B. Bederson, Phys. Rev., 117, 151 (I960)]. The “fine structure” shown in the 3 and 5 eV Rubin curves in the Gehenn and Wilmers paper are actually the forward scattering peaks in the 4s-4p excitation, and should not be included in the elastic plot [see Rubin, etal, reference 21]. Recently Gehenn and Reichert [W. Gehenn and E. Reichert, Z. Physik, in press] have performed similar measurements in sodium, with equally impressive agreement with close-coupling theory.Google Scholar
  27. 27.
    Actually the complete-story isn’t completely rosy. Slevin etal [J. A. Slevin, P. J. Visconti and K. Rubin, Phys. Rev. A5, 2065 (1971)], using a recoil technique involving detection of scattered atoms in two dimensions, obtain absolute elastic and inelastic cross sections over a wide range of energies and angles. The 3eV elastic data do not agree at all well with the data shown in Fig. 3.Google Scholar
  28. 28.
    E. Reichert, private communication.Google Scholar
  29. 29.
    E. Reichert and H. Deichsel, Phys. Lett. 25A, 560 (1967).CrossRefGoogle Scholar
  30. 30.
    K. Rubin, 4th International Conference on the Physics of Electronic and Atomic Collisions, Quebec 1965 (Science Bookcrafters, Hastings-on-Hudson, N.Y.); A. E. Glassgold, Phys. Rev. 132, 2144 (1963); A. E. Glassgold and J. F. Walker, Phys. Rev. 160, 11 (1967).Google Scholar
  31. 31.
    The potential use of spin-exchange as a means of producing polarized electrons has been long recognized. See, for example, P. S. Farago in reference 1, also J. Byrne and P. S. Farago, Proc. Phys. Soc., Lond. 86, 801 (1965); R. J. Krisciokaitis and W. Y. Tsai, Nucl. Instrum. Meth., 83, 45 (1970); B. D. Obedkov and E. X. El-Mosallamu, Vestnik Leningradskogo Universiteta, p. 43, ( 1971 No. 22); G. Drukarev, Seventh International Conference oil Physics of Electronic and Atomic Collisions, ( North-Holland Press, Amsterdam, 1971 ).Google Scholar
  32. 32.
    D. M. Campbell, H. M. Brash and P. S. Farago, Proc. Roy. Soc., in press [I am indebted to Professor Farago for sending me his results prior to publication].Google Scholar
  33. 33.
    F. G. Major and H. G. Dehmelt, Phys. Rev. 170, 91 (1968).ADSCrossRefGoogle Scholar
  34. 34.
    H. G. Dehmelt, Phys. Rev. 109, 381 (1958); L. C. Balling and F. M. Pipkin, Phys. Rev. 136, A46 (1964); L. C. Balling, Phys. Rev. 151, 1 (1966).Google Scholar
  35. 35.
    The exchange result reported in the pioneering paper of Dehmelt in 1958 (reference 34) was actually only an estimate of the cross section, and should not be considered to be a quantitative measurement.Google Scholar
  36. 36.
    H. Gibbs, Phys. Rev. 139, A1374 (1965).ADSCrossRefGoogle Scholar
  37. 37.
    The Temperature Dependence of the Electron-Rubidium Spin- Exchange Cross Section, S. J. Davis and L. C. Balling, these proceedings.Google Scholar
  38. 38.
    L. C. Balling, R. J. Hanson and F. M. Pipkin, Phys. Rev. 133, A607 (1964).ADSCrossRefGoogle Scholar
  39. 39.
    D. Andrick, M. Eyb and H. Hofmann, J. Phys. B: Atom. Molec. Phys. 5, L15 (1972).ADSCrossRefGoogle Scholar
  40. 40.
    M. McCusker, private communication.Google Scholar
  41. 41.
    E. M. Karule and R. K. Peterkop, Latvijas PSR Zinatnu Akademijas Vestis, p. 3 ( 1971 No. 1).Google Scholar
  42. 42.
    See B. Bederson and L. J. Kieffer, Rev. Mod. Phys. 43, 601 (1971); also L. J. Kieffer and G. H. Dunn, Rev. Mod. Phys. 38, 1 (1966).Google Scholar
  43. 43.
    D. R. Flower and M. J. Seaton, Proc. Phys. Soc. 91, 59 (1967).ADSCrossRefGoogle Scholar
  44. 44.
    E. A. Enemark and A. Gallagher, Phys. Rev. A6, 192 (1972).ADSCrossRefGoogle Scholar
  45. 45.
    G. N. Gould, Ph.D. Thesis, U. of New South Wales, 1970 (unpublished).Google Scholar
  46. 46.
    H. Hafner and H. Kleinpoppen, Z. Physik 198, 315 (1967).ADSCrossRefGoogle Scholar
  47. 47.
    E. M. Karule, Latvijas PSR Zinatnu Akademijas Vestis, p. 9 ( 1970 No. 3).Google Scholar
  48. 48.
    N. Feutrier, J. Phys. B: Atom. Molec. Phys. 3, L152 (1970).ADSCrossRefGoogle Scholar
  49. 49.
    See Rubin etal, reference 21; H. Kleinpoppen, reference 1, B. Bederson, reference 1.Google Scholar
  50. 50.
    M. Goldstein, A. Kasdan and B. Bederson, Phys. Rev. A660 (1972).Google Scholar
  51. 51.
    V. I. Ochkur, Soviet Phys. - JETP 18, 503 (1964).Google Scholar
  52. 52.
    See B. Bederson and L. J. Kieffer, reference 42, also, “Survey of Electron-Cesium Collision Probabilities: Momentum Transfer Collisions”, J. A. Dayton, Jr., Lewis Research Center NASA report TMX-1897, Oct. 1969.Google Scholar
  53. 53.
    It should be noted that Kasdan, Miller and Bederson report on new total cross section measurements at this meeting on sodium and lithium. While the sodium results are in almost exact agreement with Moores and Norcross, the lithium results lie some 20 - 30% above the calculations. Norcross (private communication) believes this could be attributed to core correlation effects which are particularly difficult to take into account in lithium.Google Scholar
  54. 54.
    D. E. Pritchard, D. C. Burnham and D. Kleppner, Phys. Rev. Lett. 19, 1363 (1967). For discussion of the theoretical problem of spin-exchange in alkali atom-atom collisions, see for example A. Dalgarno and M. R. H. Rudge, Proc. Roy. Soc. A286, 519 (1965); H. 0. Dickinson and M. R. H. Rudge, J. Phys. B: Atom. Molec. Phys. 3, 1448 (1970).Google Scholar
  55. 55.
    H. G. Bennewitz and R. Haerten, Z. Phys. 227, 399 (1969); S. Stolte, J. Reuss and H. L. Schwartz, Physica 57, 254 (1972).Google Scholar
  56. 56.
    M. V. McCusker, L. L. Hatfield and G. K. Walters, Phys. Rev. A5, 177 (1972).ADSCrossRefGoogle Scholar
  57. 57.
    J. C. Hill, L. L. Hatfield, N. D. Stockwell and G. K. Walters, Phys. Rev. A5, 189 (1972); see also the review talk “Polarization of Ions and Electrons by Optical Pumping Techniques”, L. D. Schearer, Atomic Physics 2 [ICAP II], edited by P. G. H. Sandars, ( Plenum Press, N.Y., 1971 ), p. 87.Google Scholar
  58. 58.
    B. Donnally and W. Sawyer, Phys. Rev. Lett. 15, 439 (1965); ICPEAC VI, Mass. Inst, of Tech. Press (1969) p. 488.Google Scholar
  59. 59.
    P. Stehle, Phys. Rev. 110, 1458 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  60. 60.
    E. Gerjuoy and F. Faisal, to be published.Google Scholar
  61. 61.
    D. Golden, private communication.Google Scholar
  62. 62.
    B. Bederson, Comments on Atomic and Molecular Physics, 1, 41 (1969).Google Scholar
  63. 63.
    A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Benjamin Bederson
    • 1
  1. 1.New York UniversityNew YorkUSA

Personalised recommendations