Status of Quantum Electrodynamics Theory

  • Norman M. Kroll
Conference paper


The recent history of quantum electrodynamics has been characterized by a steady increase of the precision of experiments which refer to low energy properties of simple quantum electrodynamical systems, and by a continued probing at high energies of the properties of the basic interaction at ever decreasing distances. The high precision experiments have provided a continuing challenge to theorists to deduce consequences of the theory to a sufficient accuracy to maintain a meaningful confrontation between theory and experiments. While puzzling discrepancies have appeared from time to time, it was possible to say1 at the last conference in this series that no serious discrepancy existed for any of the crucial tests. While this continues to be essentially the case, some recent successes in meeting this challenge have notably increased the precision of agreement.


Quantum Electrodynamic Diagram Class Vacuum Polarization Anomalous Magnetic Moment Sixth Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Brodsky, “The Present and Future State of Quantum Electro-dynamics,” Atomic Physics 2 (Proceedings of the Second International Conference on Atomic Physics) Plenum Press, 1971.Google Scholar
  2. 2.
    B. E. Lautrup, A. Peterman, and E. de Rafael, Physics Reports No. 4 (1972). This is the most recent of a number of excellent reviews of the comparison between theory and the high precision experiments. Others are referenced in this work.Google Scholar
  3. 3.
    A. Kponou, V. W. Hughes, C. E. Johnson, S. A. Lewis, and F. M. J. Pichanick, Phys. Rev. Lett. 26, 1613 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    C. Schwartz, Phys. Rev. 134, A1181 (1964).ADSCrossRefGoogle Scholar
  5. 5.
    J. Sucher, Ph.D. Thesis, Columbia, 1958 (unpublished).Google Scholar
  6. 6.
    M. Douglas, Ph0D. Thesis, University of California, San Diego (1971) (unpublished) and M. Douglas and N. Kroll to be published.Google Scholar
  7. 7.
    L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 79, 29 (1950).ADSCrossRefGoogle Scholar
  8. 8.
    B. Schiff, C. L. Pekeris and H. Lifson, Phys. Rev. 137, A1672 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    L. Hambro, Ph.D. Thesis, UCRL 19328 (unpublished). L. Hambro, Phys. Rev. A5, 2027 (1972). L. Hambro, Phys. Rev. A, to be published. ( Two papers )Google Scholar
  10. 10.
    James Daley, Ph.D. Thesis, University of California, Berkeley (1971) (unpublished).Google Scholar
  11. 11.
    M. Douglas, Phys. Rev. A, to be published (also Ref. 5).Google Scholar
  12. 12.
    J. Daley, M. Douglas, L. Hambro, and N. M. Kroll, Phys. Rev. Lett. 29, 12 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    J. C. Wesley and A. Rich, Phys. Rev. A4, 1341 (1971); Sarah Granger and G. W. Ford, Phys. Rev. Lett. 28, 1479 (1972).Google Scholar
  14. 14.
    J. Baily, W. Bartl, G. von Bochmann, R. C. A. Brown, F. J. M. Farley, H. Jostlein, E. Picasso, and R. W. Williams, Phys. Letters 28B, 287 (1968).ADSGoogle Scholar
  15. 15.
    J. Schwinger, Phys. Rev. 73, 416 (1948).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    C. M. Sommerfield, Phys. Rev. 107, 328 (1957).ADSCrossRefGoogle Scholar
  17. 17.
    A. Peterman, Helv. Phys. Acta 30, 407 (1957).Google Scholar
  18. 18.
    For a more detailed summary of this effort see ref. 2.Google Scholar
  19. 19.
    H. Veltman, SCHOONSHIP CERN (1967).Google Scholar
  20. 20.
    A. C. Hearn, Stanford University Reprint No. ITP-247.Google Scholar
  21. 21.
    J. Calmet, These-Marseille 70/p.336 (1970); Proc. Colloquium on Computational Methods in Theoretical Physics, Marseilles (Cms) 1970.Google Scholar
  22. 22.
    M. Levine, J. Comput. Phys. 1, 454 (1967).ADSMATHCrossRefGoogle Scholar
  23. 23.
    W. Czyz, G. G. Sheppey, and J. D. Walecka, Nuovo Cim. 34, 420 (1964).CrossRefGoogle Scholar
  24. A. J. Dufner, Proc. Coll. on Comp. Math, in Theoretical Physics, Marseilles/70, p. 335 (1971).Google Scholar
  25. B. E. Lautrup, Proc. of Second Coll. on Comp. Methods in Theoretical Physics, Marseilles (1971). ( To be published).Google Scholar
  26. 24.
    M. Levine and J. Wright, Phys. Rev. Lett. 26, 1351 (1971); M. Levine and J. Wright, Proc. of the Second Colloquium on Computational Methods in Theoretical Physics, Centre de Physique Theorique de Marseilles (1971). The numerical value given in the above references has been modified. Their new value, given in the compilation above, is quoted with the permission of the authors. Its official publication awaits some further checks.Google Scholar
  27. 25.
    J. Aldins, S. Brodsky, A. Dufner, and T. Kinoshita, Phys. Rev. Lett. 23, 441 (1969); Phys. Rev. Dl, 2378 (1970).Google Scholar
  28. 26.
    S. Brodsky and T. Kinoshita, Phys. Rev. D3, 356 (1971).ADSGoogle Scholar
  29. 27.
    J. Calmet and M. Perrotet, Phys. Rev. D3, 3101 (1971).ADSGoogle Scholar
  30. 28.
    J. Mignaco and E. Remiddi, Nuovo Cim. 60A, 519 (1969).ADSCrossRefGoogle Scholar
  31. 29.
    H. Suura and E. Wichmann, Phys. Rev. 105, 1930 (1957).ADSCrossRefGoogle Scholar
  32. 30.
    A. Peterman, Phys. Rev. 105, 1931 (1957).ADSCrossRefGoogle Scholar
  33. 31.
    H. H. Elend, Phys. Letters 20, 682 (1966); 21, 720 (1966) (correction).Google Scholar
  34. 32.
    B. E. Lautrup, Phys. Lett. 32B, 627 (1970).Google Scholar
  35. 33.
    B. E. Lautrup and Ec de Rafael, Nuovo Cim. 64A, 322 (1969).Google Scholar
  36. 34.
    B. E. Lautrup, A. Peterman, and E« de Rafael, Nuovo Cim. 1A, 238 (1971).Google Scholar
  37. 35.
    B. E. Lautrup and E. de Rafael, Phys. Rev. 174, 1835 (1968).ADSCrossRefGoogle Scholar
  38. 36.
    C. T. Chang and M. Levine (Private communication, to be published).Google Scholar
  39. 37.
    G. Nenciu and I. Raszillier, Lower Bounds on the Hadronic Contribution to the Muon Anomalous Magnetic Moment; Institute of Physics, Bucharest, Preprint March 1972.Google Scholar
  40. 38.
    M. Gourdin and E. de Rafael, Nuclear Phys. 10B, 667 (1969).Google Scholar
  41. 39.
    A. Bramon, E. Etim, and M. Greco, Frascati preprint LNF-72/17 (1972).Google Scholar
  42. 40.
    J. Baily, G. Bassompierre, K. Borer, F. Combley, P. Hatterslee, G. Lebee, G. Petrucci, E. Picasso, H. I. Pizer, 0. Runolfson, and R. Tinguely, The Present Status of the (g-2) Project; CERN NP Internal Report 70–13 (April 1970).Google Scholar
  43. 41.
    B. Lautrup, Phys. Lett. 38B, 408 (1972).Google Scholar
  44. 42.
    R. Jackiw and S. Weinberg, Phys. Rev. D5, 2396 (1972).ADSGoogle Scholar
  45. 43.
    W. Bardeen, R. Gastmans, and B. Lautrup; CERN Th 1485 May 1972 (to be published); I. Bars and M. Yoshimura, Phys. Rev. D6, 374 (1972).Google Scholar
  46. 44.
    R. Barbieri, J. A. Mignaco, and E. Remiddi, Nuovo Cimento Lett. 3, 588 (1970), and Nuovo Cim. 6A, 21 (1971).CrossRefGoogle Scholar
  47. 45.
    R. Barbieri, G. Mignaco, and E. Remiddi, Electron Form Factors up to Fourth Order, Preprint Dec. 1971. It is worth mentioning that this work includes a study of the fourth order electron form factors, both the Dirac and magnetic parts, for arbitrary values of the momentum transfer variable q. Complete analytic expressions for the discontinuity across the q2 cut are given, as well as the form of the dispersion integral over this discontinuity to be used in determining the complete form factor. The form of the dispersion integral is modified from the standard form on account of infrared problems.Google Scholar
  48. 46.
    G. Kallen and A. Sabry, Dan. Mat. Fys. Medd 29, n. 17 (1955).Google Scholar
  49. 47.
    J. Weneser, R. Bersohn, and N. M. Kroll, Phys. Rev. 91, 1257 (1953); M. F. Soto Jr., Phys. Rev. A2, 734 (1970). These references contain an over all sign error.Google Scholar
  50. 48.
    B. E. Lautrup, A. Peterman, and E. de Rafael, Phys. Letters 3IB, 577 (1970).; A. Peterman, Phys. Lett. 35B, 325 (1971).CrossRefGoogle Scholar
  51. 49.
    T. Applequist and S. J. Brodsky, Phys. Rev. Lett. 24, 562 (1970), and Phys. Rev. A2, 2293 (1970). See reference 2 for a detailed discussion and comparison of the results of references 44, 47, 48,and 49.Google Scholar
  52. 50.
    G. W. Erickson, Phys. Rev. Lett., 27, 780 (1971).ADSCrossRefGoogle Scholar
  53. 51.
    R. Robiscoe and T. Shyn, Phys. Rev. Lett. 24, 559 (1970).ADSCrossRefGoogle Scholar
  54. 52.
    S. Triebwasser, E. S. Dayhoff, and W. E. Lamb Jr., Phys. Rev. 89, 98 (1953).ADSCrossRefGoogle Scholar
  55. 53.
    A. M. Desiderio and W. R. Johnson, Phys. Rev. A3, 1267 (1971).ADSCrossRefGoogle Scholar
  56. 54.
    C. K. Iddings, Phys. Rev. 138, B446 (1965).ADSCrossRefGoogle Scholar
  57. 55.
    S. D. Drell and J. D. Sullivan, Phys. Rev. 154, 1477 (1967).ADSCrossRefGoogle Scholar
  58. 56.
    S. D. Drell, First Int’l. Conf. on Atomic Phys., Proceedings, Ed.: Bederson, Cohen and Pichanick, Plenum Press, 1969.Google Scholar
  59. 57.
    E. de Rafael, Phys. Lett. 37B, 201 (1971).Google Scholar
  60. 58.
    T. Fulton, D. A. Owen, and W. Repko, Phys. Rev. A4, 1802 (1971).ADSGoogle Scholar
  61. 59.
    V. W. Hughes, Status of Quantum Electrodynamics Experiments, this volume.Google Scholar
  62. 60.
    T. Fulton, Johns Hopkins University Preprint, April 1972. At the time of Fulton’s analysis, the experimental number was somewhat lower, so that the discrepancy was 23 ± 4 MHz.Google Scholar
  63. 61.
    E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 843 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  64. 62.
    M. S. Dixit, H. L. Anderson, C. K. Hargrove, R. J. McKee, D. Kessler, H. Mes, A. C. Thompson, Phys. Rev. Lett. 27, 878 (1971).ADSCrossRefGoogle Scholar
  65. 63.
    B. Fricke, Z. Physik 218, 495 (1969).ADSCrossRefGoogle Scholar
  66. 64.
    M. K. Sundaresen and P. J. S. Watson, Phys. Rev. Lett. 29, 15 (1972).ADSCrossRefGoogle Scholar
  67. 65.
    J. Blomquist, Vaccuum Polarization in Exotic Atoms, Research Institute for Phys ics, Stockholm Preprint 1972. The double counting of the “double bubble” diagram, pointed out in this work, is also present in Refs. 62 and 63. It appears to have been due to a misreading of Ref. 46.Google Scholar
  68. 66.
    Thomas L. Bell, Enrico Fermi Institute Preprint EFI 72–38, August 1972, Ref. 64 and 68 also contain re-evaluations of the a(az)3 terms with results somewhat different from those of Ref. 65 and 66. The difference is due to a less accurate treatment of the spatial distribution of the polarization charge.Google Scholar
  69. 67.
    P. Vogel, Caltech Report GALT-63-175.Google Scholar
  70. 68.
    B. Fricke, J. T. Waber and V. L. Telegdi, Northwestern University Preprint COO-2127-34, 1972.Google Scholar
  71. 69.
    K M. Crowe, J. F. Hague, J. E. Rothberg, A. Schenk, D. L. Williams, R. W. Williams and R. K. Young, Phys. Rev. D5, 2145 (1972). See page 2159, subsection B.Google Scholar
  72. 70.
    H. K. Walter, J. H. Vuilleumier, H. Backe, F. Boehm, R. Engfer, A. H. Gunten, R. Link, R. Michaelson, C. Petitjean, L. Schellenberg, H. Schneuwly, W. V. Schroder, and A. Zehnder, Phys. Lett. 40B, 197 (1972).CrossRefGoogle Scholar
  73. 71.
    G. Bacci, G. Penso, G. Salvini, R. Baldini-Celio, G. Capon, C. Mencuccini, G. P. Murtas, A. Reale and M. Spinetti, Lett, al Nuovo Cim., 2, 73 (1971).CrossRefGoogle Scholar
  74. 72.
    R. Borgin, F. Ceradini, M. Conversi, L. Paoluzi, W. Scandale, G. Barbiellini, M. Grilli, P. Spilantini, R. Visentin, and A. Mullachie, Phys. Lett. 35B, 340 (1971).Google Scholar
  75. 73.
    R. Borgia, F. Ceradini, M. Conversi, L. Paoluzi, R. Santonico, G. Barbiellini, M. Grilli, P. Spilantini, R. Visentin, and F. Grianti, Lett, al Nuovo Cim., 3, 115 (1972).CrossRefGoogle Scholar
  76. 74.
    S. Hayes, R. Imlay, P. M. Joseph, A. S. Keizer, J. Knowles and P. C. Stein, Phys. Rev. Lett. 24, 1369 (1970).ADSCrossRefGoogle Scholar
  77. 75.
    C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).MathSciNetADSCrossRefGoogle Scholar
  78. 76.
    P. Higgs, Phys. Lett. JL2, 132 (1964) and Phys. Rev. 145, 1156 (1956).Google Scholar
  79. 77.
    T. W. B. Kibble, Phys. Rev. 155, 1554 (1967).ADSCrossRefGoogle Scholar
  80. 78.
    J. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957). S. L. Glashow, Nucl. Phys. 22, 509 (1961). A. Salam and J. Ward, Phys. Lett. 13, 168 (1964).Google Scholar
  81. 79.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); ibid. 27, 1688 (1971).Google Scholar
  82. 80.
    G. ft Hooft, Nucl. Phys. B35, 167 (1971).Google Scholar
  83. 81.
    B. W. Lee and J. Zinn-Justin, Phys. Rev. D5, 3121, 3137, 3155 (1972).ADSCrossRefGoogle Scholar
  84. 82.
    S. Weinberg, Phys. Rev. Lett. 29, 388 (1972).ADSCrossRefGoogle Scholar
  85. 83.
    H. H. Chen and B. W. Lee, Phys. Rev. D5, 1874 (1972).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Norman M. Kroll
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations