Photodetachment of Li¯ and Na¯

  • D. W. Norcross
  • D. L. Moores


Reliable estimates of the photodetachment cross sections and electron affinities of the negative ions of the alkali metals are required for interpretation of the properties of low-temperature plasmas, and in the fields of upper-atmosphere physics and astrophysics. Experimental data are rather scarce and uncertain, the electron affinities being too low (∿0.5 eV) for application of standard photoabsorption techniques near threshold. Even if this were possible, the cross section is expected to display a k3 dependence at threshold appropriate to an s → p transition, thereby precluding a sharp onset. The electron affinity of lithium has been measured by Ya’akobi,1 in experiments with electrically exploded lithium wires, and by Sheer and Fine,2 who studied the positive and negative surface ionization of a lithium beam. Two measurements of the electron affinity of sodium and the heavier alkali metals using resonant charge exchange are cited in the review of Smirnov.3 No measurements of the photodetachment cross sections have been made.


Electron Affinity Neutral Atom Velocity Result Trial Wave Function Autoionizing State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Ya’akobi, Phys. Letters 23, 655 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    M. D. Sheer and J. Fine, J. Chem. Phys. 50, 4343 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    B. M. Smirnov, Teplofiz, Vysh. Temp. 3, 775 (1965).Google Scholar
  4. 4.
    S. Geltman, Phys. Rev. 104, 346 (1956).ADSCrossRefGoogle Scholar
  5. 5.
    B. Edlen, J. Chem. Phys. 33, 98 (1960).ADSCrossRefGoogle Scholar
  6. 6.
    A. W. Weiss, Phys. Rev. 166, 70 (1968) and private communication.Google Scholar
  7. 7.
    A. C. Fung and J. J. Matese, Phys. Rev. A 5, 22 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    B. Yafakobi, Phys. Rev. 184, 246 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. V. Moskvin, Teplofiz. Vysh. Temp. 3, 821 (1965).Google Scholar
  10. 10.
    T. John, J. Phys. B (Atom. Molec. Phys.) 5, L121 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    P. G. Burke and A. J. Taylor, J. Phys. B (Atom. Molec. Phys.) 2, 869 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    D. L. Moores and D. W. Norcross, J. Phys. B (Atom. Molec. Phys.), in press.Google Scholar
  13. 13.
    D. Andrick, M. Eyb and H. Hofmann, J. Phys. B (Atom. Molec. Phys.) 5, L15 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    W. Gehenn and E. Reichert, Z. Phys., in press.Google Scholar
  15. 15.
    D. W. Norcross, J. Phys. B (Atom. Molec. Phys.) 4, 1458 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    H. Hotop, T. A. Patterson, and W. C. Lineberger, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • D. W. Norcross
    • 1
  • D. L. Moores
    • 1
    • 2
  1. 1.Joint Institute for Laboratory AstrophysicsThe University of ColoradoBoulderUSA
  2. 2.University College LondonLondonUK

Personalised recommendations