Advertisement

Model Potential Calculations for Two-Valence Electron Systems

  • C. Laughlin
  • G. A. Victor
Conference paper

Abstract

Model potential and pseudo-potential methods have been employed by many workers to study the structure and properties of one- and two- valence electron atomic and molecular systems.1–7 The formalism and many of the earlier results have been reviewed by Weeks, Hazi, and Rice.1 We are developing consistent semiempirical models for the prediction of the energy spectrum, oscillator strengths, transition probabilities, and other properties for atomic systems with two-valence electrons outside a closed shell core. A feature of our model, which distinguishes it from conventional pseudo-potential methods, is that the solutions to the corresponding one-electron problem, which are used as a basis for solving the two-electron problem, are chosen to have the correct number of radial nodes making orthogonalization to the occupied core orbitals of the same symmetry unnecessary. Long-range polarization terms are included explicitly in the potential, and short-range correction terms are determined so that the observed eigenenergies of the one-valence electron system are reproduced to high accuracy.

Keywords

Valence Electron Oscillator Strength Energy Eigenvalue Radial Node Autoionizing Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Weeks, A. Hazi and S. A. Rice, Adv. Chem. Phys. 16, 283 (1969).CrossRefGoogle Scholar
  2. 2.
    L. Szasz, J. Chem. Phys. 49, 679 (1968).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    L. Szasz and G. McGinn, J. Chem. Phys. 56, 1019 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    J. C. Weisheit and A. Dalgarno, Phys. Rev. Letters 27, 701 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    T. C. Caves and A. Dalgarno, to be published in J. Quant. Spect. and Rad. Transf. (1972).Google Scholar
  6. 6.
    J. C. Weisheit, Phys. Rev. A5, 1621 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    G. A. Victor and C. Laughlin, Chem. Phys. Letters 14, 74 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    C. Bottcher, J. Phys. B: Atom. Molec. Phys. 4, 1140 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    U. Opik, Proc. Phys. Soc. 92, 573 (1967); C. J. Kleinman, Y. Hahn and L. Spruch, Phys. Rev. 165, 53 (1968).Google Scholar
  10. 10.
    C. C. J. Roothaan, L. M. Sachs and A. W. Weiss, Rev. Mod. Phys. 32, 186 (I960).Google Scholar
  11. 11.
    E. Clementi, IBM J. Res. Develop. Suppl. 9 (1965).Google Scholar
  12. 12.
    G. Peckham, Computer J. 13, 418 (1970).MathSciNetMATHGoogle Scholar
  13. 13.
    L. Johansson, Arkiv. Fysik 20, 489 (1962).Google Scholar
  14. 14.
    G. Risberg, Arkiv. Fysik 9, 483 (1955).Google Scholar
  15. 15.
    A. W. Weiss, private communication (1972).Google Scholar
  16. 16.
    G. Mehlman-Balloffet and J. M. Esteva, Astrophys. J. 157, 945 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    L. Johansson, Arkiv. Fysik 23, 119 (1962).Google Scholar
  18. 18.
    G. Risberg, Arkiv. Fysik 28, 381 (1964).Google Scholar
  19. 19.
    I. B. Bersukev, Opt. Spectrosc. 3, 97 (1957); S. Hameed, A. Herzenberg and M. G. James, J. Phys. B; Atom. Molec. Phys. 1, 882 (1968).Google Scholar
  20. 20.
    A. W. Weiss, see ref. 22.Google Scholar
  21. 21.
    P. G. Burke, A. Hibbert and W. D. Robb, J. Phys. B: Atom. Molec. Phys. 5, 37 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    S. Hontzeas, I. Martinson, P. Erman and R. Buchta, to be published.Google Scholar
  23. 23.
    H. J. Kolker and H. H. Michels, J. Chem. Phys. 43, 1027 (1965).ADSCrossRefGoogle Scholar
  24. 24.
    G. A. Victor and A. Dalgarno, unpublished.Google Scholar
  25. 25.
    U. Opik, Proc. Phys. Soc. 92, 566 (1967).ADSCrossRefGoogle Scholar
  26. 26.
    A. W. Weiss, Phys. Rev. 166, 70 (1968).ADSCrossRefGoogle Scholar
  27. 27.
    D. F. Tuan and O. Sinanoglu, J. Chem. Phys. 41, 2677 (1964).ADSCrossRefGoogle Scholar
  28. 28.
    R. K. Nesbet, Phys. Rev. 155, 51 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    A. W. Weiss, J. Chem. Phys. 47, 3573 (1967).ADSCrossRefGoogle Scholar
  30. 30.
    J. D. Weeks and S. A. Rice, J. Chem. Phys. 49, 2741 (1968).ADSCrossRefGoogle Scholar
  31. 31.
    P. L. Altick, Phys. Rev. 169, 21 (1968).ADSCrossRefGoogle Scholar
  32. 32.
    D. L. Moores, Proc. Phys. Soc. 91, 830 (1967).ADSCrossRefGoogle Scholar
  33. 33.
    C. Nicolaides, see ref. 22.Google Scholar
  34. 34.
    H. P. Kelly, Phys. Rev. 136, B896 (1964).ADSCrossRefGoogle Scholar
  35. 35.
    S. Hameed, J. Phys. B: Atom. Molec. Phys. 5, 746 (1972).ADSCrossRefGoogle Scholar
  36. 36.
    C. Froese, J. Chem. Phys. 47, 4010 (1967).ADSCrossRefGoogle Scholar
  37. 37.
    T. Andersen, K. A. Jessen and G. Sorensen, Phys. Rev. 188, 76 (1969).ADSCrossRefGoogle Scholar
  38. 38.
    J. Bromander, Physica Scripta 4, 61 (1971).Google Scholar
  39. 39.
    R. N. Zare, J. Chem. Phys. 47, 3561 (1967).ADSCrossRefGoogle Scholar
  40. 40.
    B. Warner, Mon. Not. Roy. Astron. Soc. 139, 115 (1968); 140, 53 (1968).MathSciNetADSGoogle Scholar
  41. 41.
    A. Lurio, Phys. Rev. A136, 376 (1964).ADSCrossRefGoogle Scholar
  42. 42.
    W. W. Smith and A. Gallagher, Phys. Rev. 145, 26 (1966).ADSCrossRefGoogle Scholar
  43. 43.
    H. G. Berry, J. Bromander and R. Buchta, Physica Scripta 1, 181 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • C. Laughlin
    • 1
    • 2
  • G. A. Victor
    • 1
    • 2
  1. 1.Department of MathematicsThe University of NottinghamNottinghamEngland
  2. 2.Smithsonian Astrophysical Observatory and Harvard College ObservatoryCambridgeUSA

Personalised recommendations