Neurotoxic Amino Acids

  • Graham A. R. Johnston


Some 200 amino acids have been isolated from plants, but only about 10% of these are normal constituents of mammalian nervous tissue. Many of the other 90% structurally resemble certain of those present in nervous tissue, such that they may compete with the corresponding “normal” amino acid at one or more of its receptor sites, with consequent adverse effects on the nervous system. These receptor sites for amino acids may be on enzymes, transport carriers, or synaptic membranes. With the increasing acceptance of the concept of particular amino acids, especially γ-aminobutyric acid (GABA), glycine, and glutamic and aspartic acids, functioning as major synaptic transmitters in the mammalian central nervous system (Curtis and Johnston, 1974), it appears likely that the neurotoxicity of certain plant amino acids results from interference with amino acid-mediated synaptic transmission. The “antimetabolite” properties of toxic amino acids, particularly in microorganisms, have been extensively studied and have been reviewed by Fowden et al. (1967); this chapter is concerned with some amino acids of plant and fungal origin that adversely influence the mammalian central nervous system after systemic administration.


Glutamic Acid Glutamine Synthetase Monosodium Glutamate Ibotenic Acid Common Vetch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, K., Hoch, P., and Waeisch, H., 1946, Preliminary report on the effect of glutamic acid administration in mentally retarded subjects, J. Nerv. Ment. Dis. 104: 263.PubMedCrossRefGoogle Scholar
  2. Arees, E., and Mayer, J., 1970, Monosodium glutamate-induced brain lesions, electron microscopic examination, Science 1970: 549.CrossRefGoogle Scholar
  3. Azzi, A., Chappell, J. B., and Robinson, B. H., 1967, Penetration of the mitochondrial membrane by glutamate and aspartate, Biochem. Biophys. Res. Commun. 29: 148.PubMedCrossRefGoogle Scholar
  4. Baläzs, R., Patel, A. J., and Richter, D., 1973, Metabolic compartments in the brain: Their properties and relation to morphological structures, in: Metabolic Compartmentation in the Brain ( R. Balazs and J. E. Cremer, eds.) pp. 167–184, Macmillan, London.Google Scholar
  5. Balcar, V. J., and Johnston, G. A. R., 1972, Glutamate uptake by brain slices and its relation to the depolarization of neurones by acidic amino acids, J. Neurobiol. 3: 295.PubMedCrossRefGoogle Scholar
  6. Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters: Studies on the uptake of L-asparate, GABA, L-glutamate and glycine in cat spinal cord, J. Neu- rochem. 20: 529.CrossRefGoogle Scholar
  7. Banay-Schwartz, M., Piro, L., and Lajtha, A., 1971, Relationship of ATP levels to amino acid transport in slices of mouse brain, Arch. Biochem. Biophys. 145: 199.CrossRefGoogle Scholar
  8. Baxter, C. F., and Roberts, E., 1958, The γ-aminobutyric acid-α-ketoglutaric acid transaminase of beef brain, J. Biol. Chem. 233: 1135.PubMedGoogle Scholar
  9. Beart, P. M., and Johnston, G. A. R., 1973, Transamination of analogues of γ-aminobutyric acid by extracts of rat brain mitochondria, Brain Res. 49: 459.PubMedCrossRefGoogle Scholar
  10. Bell, E. A., 1964, Relevance of biochemical taxonomy to the problem of lathyrism, Nature (Lond.) 203: 378.CrossRefGoogle Scholar
  11. Bell, E. A., 1968, Occurrence of the neurolathyrogen α-amino-ß-oxalylaminopropionic acid in two species of Crotalaria, Nature (Lond.) 218: 197.CrossRefGoogle Scholar
  12. Bell, E. A., and O’Donovan, J. P., 1966, The isolation of α- and γ-oxalyl derivatives of α,γ- diaminobutyric acid from seeds of Lathyrus latijolius, and the detection of the α- oxalylisomer of the neurotoxin α-amino-ß-oxalylaminopropionic acid in this and other species, Phytochemistry 5: 1211.CrossRefGoogle Scholar
  13. Bell, E. A., and Tirimanna, A. S. L., 1965, Association of amino acids and related compounds in the seeds of forty-seven species of Vicia: Their taxonomic and nutritional significance, Biochem. J. 97: 104.PubMedGoogle Scholar
  14. Benedict, R. G., 1972, Mushroom toxins other than Amanita, in: Microbial Toxins, Vol. 8 (S. Kadis, A. Ciegler, and S. J. Ajl, eds.) pp. 281320, Academic Press, New York.Google Scholar
  15. Brehm, L., Hjeds, H., and Krogsgaard-Larsen, P., 1972, The structure of muscimol, a GABA analogue of restricted conformation, Acta Chem. Scand. 26: 1298.PubMedCrossRefGoogle Scholar
  16. Bürde, R. M., Schainker, B., and Kayes, J., 1971, Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats, Nature (Lond.) 233: 58.CrossRefGoogle Scholar
  17. Cheema, P. S., Malathi, K., Padmanaban, G., and Sarma, P. S., 1969a, The neurotoxicity of β-N-oxalyl-L-α,β-diaminopropionic acid, the neurotoxin from the pulse Lathyrus sativus, Biochem. J. 112: 29.Google Scholar
  18. Cheema, P. S., Padmanaban, G., and Sarma, P. S., 1969b, Neurotoxic action of β-N-oxalyl- L-α,β-diaminopropionic acid in acidotic adult rats, Indian J. Biochem. Biophys. 6: 146.Google Scholar
  19. Cheema, P. S., Padmanaban, G., and Sarma, P. S., 1970, Biochemical characterization of ß- N-oxalyl-L-α,ß-diaminopropionic acid, the Lathyrus sativus neurotoxin as an excitant amino acid, J. Neurochem. 17: 1295.PubMedCrossRefGoogle Scholar
  20. Cheema, P. S., Padmanaban, G., and Sarma, P. S., 1971a, Transamination of β-N-oxalyl-L- α,ß-diaminopropionic acid, the Lathyrus sativus neurotoxin, in tissues of the rat, Indian J. Biochem. Biophys. 8: 16.PubMedGoogle Scholar
  21. Cheema, P. S., Padmanaban, G., and Sarma, P. S., 1971b, Mechanism of action of ß-N- oxalyl-L-α,β-diaminopropionic acid, the Lathyrus sativus neurotoxin, J. Neurochem. 18: 2137.PubMedCrossRefGoogle Scholar
  22. Chen, C. H., Flory, W., and Koeppe, R. E, 1972, Variation of neurotoxicity of L- and D-2,4- diaminobutyric acid with route of administration, Toxicol. Appl. Pharmacol. 23: 334.PubMedCrossRefGoogle Scholar
  23. Clifford, J. M., Taberner, P. V., Tunnicliff, G., Rick, J. T., and Kerkut, G. A., 1973, Biochemical and pharmacological actions of imidazoleacetic acid, Biochem. Pharmacol. 22: 535.PubMedCrossRefGoogle Scholar
  24. Cohen, A. I., 1967, An electron microscopic study of the modification by monosodium glutamate of the retinas of normal and “rodless” mice, Am. J. Anat. 120: 319.CrossRefGoogle Scholar
  25. Crawford, J. M., 1963, The effect upon mice of intraventricular injection of excitant and depressant amino acids, Biochem. Pharmacol. 12: 1443.PubMedCrossRefGoogle Scholar
  26. Creasey, W. A., and Malawista, S. E., 1971, Monosodium L-glutamate-inhibition of glucose uptake in brain as a basis for toxicity, Biochem. Pharmacol. 20: 2917.PubMedCrossRefGoogle Scholar
  27. Curtis, D. R., and Crawford, J. M., 1969, Central synaptic transmission-Microelec- trophoretic studies, Ann. Rev. Pharmacol. 9: 209.PubMedCrossRefGoogle Scholar
  28. Curtis, D. R., and Johnston, G. A. R., 1974, Amino acid transmitters in the mammalian central nervous system, Ergeb. Physiol. Biol. Chem. Exptl. Pharmakol. 69: 97.Google Scholar
  29. Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6: 117.PubMedCrossRefGoogle Scholar
  30. Curtis, D. R., and Watkins, J. C., 1965, The pharmacology of amino acids related to γ- aminobutyric acid, Pharmacol. Rev. 17: 347.PubMedGoogle Scholar
  31. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1971a, Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord, Brain Res. 32: 69.PubMedCrossRefGoogle Scholar
  32. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., and McLennan, H., 1971b, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33: 57.Google Scholar
  33. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebecis, A. K., and Watkins, J. C., 1972, Excitation of mammalian central neurones by acidic amino acids, Brain. Res. 41: 283.PubMedCrossRefGoogle Scholar
  34. Dastur, D. K., 1962, Lathyrism, World Neurol. 3: 721.PubMedGoogle Scholar
  35. Davies, L. P., and Johnston, G. A. R., 1973, Serine hydroxymethyltransferase in the central nervous system: Regional and subcellular distribution studies, Brain Res. 54: 149.CrossRefGoogle Scholar
  36. De Robertis, E., Sellinger, O. Z., Rodriguez de Lores Amaiz, G., Alberici, M., and Zieher, L. M., 1967, Nerve endings in methionine sulphoximine convulsant rats, a neurochemical and ultrastructural study, J. Neurochem. 14: 81.Google Scholar
  37. Do Carmo, R. J., and Leäo, A. A. P., 1972, On the relation of glutamic acids and some allied compounds to cortical spreading depression, Brain Res. 39: 515.PubMedCrossRefGoogle Scholar
  38. Duque-Magalhaes, M. C., and Packer, L., 1972, Action of the neurotoxin ß-N-oxalyl-L-α,β- diaminopropionic acid on glutamate metabolism of brain mitochondria, FEBS Letters 23: 188.PubMedCrossRefGoogle Scholar
  39. Eugster, C. H., 1969, Chemie der Wirkstoffe aus dem Fliegenpilz (Amanita muscaria), Fortschr. Chem. Org. Naturst. 27: 261.PubMedGoogle Scholar
  40. Fowden, L., Lewis, D., and Tristram, H., 1967, Toxic amino acids: Their actions as antimetabolites, Advan. Enzymol. Relat. Areas Mol. Biol. 29: 89.Google Scholar
  41. Gaitonde, M. K., 1970, Sulfur amino acids, in: Handbook of Neurochemistry, Vol. 3 ( A. Lajtha, ed.) pp. 225–287, Plenum Press, New York.Google Scholar
  42. Ganapathy, K. T., and Dwivedi, M. P., 1961, Studies on Clinical Epidemiology of Lathyrism, Lathyrism Enquiry Field Unit, Indian Council of Medical Research, Gandhi Memorial Hospital, Rewa.Google Scholar
  43. Gaull, G. E, 1972, Abnormal metabolism of sulfur-containing amino acids associated with brain dysfunction, in: Handbook of Neurochemistry, Vol. 7 ( A. Lajtha, ed.) pp. 169–190, Plenum Press, New York.Google Scholar
  44. Ghadimi, H., and Kumar, S., 1972, Current status of monosodium glutamate, Am. J. Clin. Nutr. 25: 643.PubMedGoogle Scholar
  45. Giovanelli, J., 1966, Oxalyl-coenzyme A synthetase from pea seeds, Biochim. Biophys. Acta. 118: 124.PubMedCrossRefGoogle Scholar
  46. Giovanelli, J., and Mudd, S. H., 1967, Synthesis of homocysteine and cysteine by enzyme extracts of spinach, Biochem. Biophys. Res. Commun. 27: 150.PubMedCrossRefGoogle Scholar
  47. Goodman, L. S., Swinyard, E. A., and Toman, J. E. P., 1946, Effects of l(+)glutamic acid and other agents on experimental seizures, Arch. Neurol. Psychiat. 56: 20.PubMedCrossRefGoogle Scholar
  48. Gruener, N., 1972, Effect of glutamic acid on ATP levels in the neuron, Israel J. Med. Sci. 8: 101.PubMedGoogle Scholar
  49. Haas, H. L., Anderson, E. G. and Hösli, L., 1972, Histamine and metabolites: Their effects and interactions with convulsants on brain stem neurones, Brain. Res. 51: 269.CrossRefGoogle Scholar
  50. Harvey, J. A., and Mcllwain, H., 1968, Excitatory acidic amino acids and the cation content and sodium ion flux of isolated tissues from the brain, Biochem. J. 108: 269.PubMedGoogle Scholar
  51. Hennecke, H., and Wiechert, P., 1970, Seizures and the dose of L-glutamic acid in rats, Epilepsia 11: 327.PubMedCrossRefGoogle Scholar
  52. Himwich, H. E., and Himwich, W. A., 1955, The permeability of the blood-brain barrier to glutamic acid in the developing brain, in: Biochemistry of the Developing Nervous System ( H. Waelsch, ed.) pp. 202–207, Academic Press, New York.Google Scholar
  53. Holtzman, E., 1969, Lysosomes in the physiology and pathology of neurons, in: Lysosomes in Biology and Pathology ( J. T. Dingle and H. B. Fell, eds.) pp. 192–216, North-Holland, Amsterdam.Google Scholar
  54. Ho Man Kwok, R., 1968, Letter to the editor, New Engl. J. Med. 278: 796.Google Scholar
  55. Ikeda, K., 1912, The taste of the salt of glutamic acid, Orig. Com. 8th Internat. Congr. Appl. Chem. 18:147; Chem. Abst. 6: 3134.Google Scholar
  56. Iversen, L. L., and Johnston, G. A. R., 1971, GABA uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effects of some inhibitors, J. Neurochem. 18: 1939.PubMedCrossRefGoogle Scholar
  57. Jacob, E., Patel, A. J., and Ramakrishnan, C. V., 1967, Effect of neurotoxin from the seeds of Lathyrus sativus on glutamate metabolism in chick brain, J. Neurochem. 14: 1091.PubMedCrossRefGoogle Scholar
  58. Johnston, G. A. R., 1971, Muscimol and the uptake of γ-aminobutyric acid by rat brain slices, Psychopharmacologia 22: 230.PubMedCrossRefGoogle Scholar
  59. Johnston, G. A. R., 1973, Convulsions induced in 10-day-old rats by intraperitoneal injection of monosodium glutamate and related amino acids, Biochem. Pharmacol. 22: 137.PubMedCrossRefGoogle Scholar
  60. Johnston, G. A. R., and Lloyd, H. J., 1967, Oxalyl-coenzyme A synthetase and the neurotoxin β-N-oxalyl-L-α,β-diaminopropionate, Aust. J. Biol. Sci. 20: 1241.PubMedGoogle Scholar
  61. Johnston, G. A. R., Curtis, D. R., de Groat, W. C., and Duggan, A. W., 1968, Central actions of ibotenic acid and muscimol, Biochem. Pharmacol. 17: 2488.Google Scholar
  62. Kahlson, G., and Rosengren, E,. 1971, Biogenesis and Physiology of Histamine, Edward Arnold, London.Google Scholar
  63. Kamiya, T. 1969, Synthesis of tricholomic acid. VII. Synthesis of four optically active isomers of tricholomic acid, Chem. Pharm. Bull. 17: 890.CrossRefGoogle Scholar
  64. Key, B. J., and White, P. R., 1970, Neuropharmacological comparison of cystathionine, cysteine, homoserine and alpha-ketobutyric acid in cats, Neuropharmacology 9: 349.PubMedCrossRefGoogle Scholar
  65. Kier, L. B., and Truitt, E. B., 1970, Molecular orbital studies on the conformation of γ- aminobutyric acid and muscimol, Experientia 29: 988.CrossRefGoogle Scholar
  66. König-Bersin, P., Waser, P. G., Langmann, H., and Lichtensteiger, W., 1970, Monoamines in the brain under the influence of muscimol and ibotenic acid, two psychoactive principles of Amanita muscaria, Psychopharmacologia 18: 1.PubMedCrossRefGoogle Scholar
  67. Lakshmanan, J., Cheema, P. S., and Padmanaban, G., 1971, Effects of ß-N-oxalyl-L-α,β- diaminopropionic acid on chick brain lysosomes, Nature New Biol. 234: 156.PubMedGoogle Scholar
  68. Lamar, C., 1968, The duration of the inhibition of glutamine synthetase by methionine sulphoximine, Biochem. Pharmacol. 17: 636.PubMedCrossRefGoogle Scholar
  69. Lamar, C., and Sellinger, O. Z., 1965, The inhibition in vivo of cerebral glutamine synthetase and glutamine transferase by the convulsant methionine sulphoximine, Biochem. Pharmacol. 14: 489.PubMedCrossRefGoogle Scholar
  70. Leston, J. M., Rey, J. C., Gonzales Montaner, L. J., Grondona, A., and Zavalla, P. N., 1970, Psychosomatic reactions to cycloserine in the treatment of tuberculosis, Scand. J. Resp. Dis. (Suppl.) 71: 231.Google Scholar
  71. List, P. H., and Menssen, H. G., 1959, Basic constituents of mushrooms, IV. Biogenic amines of Polyporus suljureus, Arch. Pharm. 292: 260.CrossRefGoogle Scholar
  72. List, P. H., and Reith, H., 1960, Basic constituents of fungi. X. Imidazole derivatives in ink cap, Coprinus atroamentarius Bull. Hoppe-Seyler’s Physiol. Chem. 319: 17.Google Scholar
  73. Logan, W. J., and Synder, S. H., 1972, High affinity uptake systems for glucine, glutamic and aspartic acids in synaptosomes of rat central nervous tissue, Brain. Res. 42: 413.PubMedCrossRefGoogle Scholar
  74. Lucas, D. R., and Newhouse, J. P., 1957, The toxic effect of sodium -glutamate on the inner layers of the retina, Arch. Ophthalmol. 58: 193.CrossRefGoogle Scholar
  75. Malathi, K., Padmanaban, G., Rao, S. L. N., and Sarma, P. S., 1967, Studies on the biosynthesis of ß-N-oxalyl-L-α,ß-diaminöpropionic acid, the Lathyrus sativus neurotoxin, Biochem. Biophys. Acta 141: 71.PubMedCrossRefGoogle Scholar
  76. Malathi, K., Padmanaban, G., and Sarma, P. S., 1968, Oxalylation of some amino acids by an enzyme preparation from Lathyrus sativus, Indian J. Biochem. Biophys. 5: 184.Google Scholar
  77. Malathi, K., Padmanaban, G., and Sarma, P. S., 1970, Biosynthesis of ß-N-oxalyl-L-α,ß- diaminopropionic acid, the Lathyrus sativus neurotoxin, Phytochemistry 9: 1603.CrossRefGoogle Scholar
  78. Mani, K. S., Sriramachari, S., Rao, S. L. N., and Sarma, P. S., 1971, Experimental neurolathyrism in monkeys, Indian J. Med. Res. 59: 880.PubMedGoogle Scholar
  79. Manning, J. M., Moore, S., Rowe, W. B., and Meister, A., 1969, Identification of L-methionine-S-sulfoximine as the diastereoisomer of L-methionine-SR-sulfoximine that inhibits glutamine synthetase, Biochemistry, 8: 2681.PubMedCrossRefGoogle Scholar
  80. Marcus, R. J., Winters, W. D., Roberts, E., and Simonsen, D. G., 1971, Neuropharmacological studies of imidazole-4-acetic acid actions in the mouse and rat, Neuropharmacology 10: 203.PubMedCrossRefGoogle Scholar
  81. Mason, M. M., and Whiting, M. G., 1966, Demyelination in the bovine spinal cord caused by zamia neurotoxicity, Fed Proc. 25: 533.Google Scholar
  82. Mcllwain, H., Harvey, J. A., and Rodriguez, G., 1969, Tetrodotoxin on the sodium and other ions of cerebral tissues, excited electrically and with glutamate, J. Neurochem. 16: 363.CrossRefGoogle Scholar
  83. Mehta, T., Hsu, A.-F., and Haskell, B. E., 1972, Specificity of the neurotoxin from Lathyrus sativus as an amino acid antagonist, Biochemistry 11: 4053.PubMedCrossRefGoogle Scholar
  84. Murayama, K., Morimura, S., Nakamura, Y., and Sunagawa, G., 1965, Synthesis of pyrrolidine derivatives. II. Synthesis of kainic acid and its derivatives by Wittig reaction, Yakugaku Zasshi 85: 757.PubMedGoogle Scholar
  85. Murti, V. V. S., Seshadri, T. R., and Venkitasubramanian, T. A., 1964, Neurotoxic compounds of the seeds of Lathyrus sativus, Phytochemistry 3: 73.CrossRefGoogle Scholar
  86. Mushahwar, I. K., and Koeppe, R. E., 1963, Concerning the metabolism of D- and L-α,β- diaminobutyric acid-2-C14 in rats, J. Biol. Chem. 238: 2460.PubMedGoogle Scholar
  87. Mushahwar, I. K., and Koeppe, R. E., 1971, The toxicity of monosodium glutamate in young rats, Biochem. Biophys. Acta 244: 318.PubMedCrossRefGoogle Scholar
  88. Nagarajan, V., Mohan, V. S., and Gopalan, C., 1966, Further studies on the toxic factor in Lathyrus sativus-Potentiation of a toxic fraction from the seed by some amino acids, Indian J. Biochem. Biophys. 3: 130.PubMedGoogle Scholar
  89. Nakajima, T., Wolfram, F., and Clark, W. G., 1967, Identification of 1,4-methylhistamine, 1, 3-diaminopropane and 2,4-diaminobutyric acid in bovine brain, J. Neurochem. 14: 1113.PubMedCrossRefGoogle Scholar
  90. Neuberger, A., 1936, Dissociation constants and structures of glutamic acid and its esters, Biochem. J. 30: 2085.PubMedGoogle Scholar
  91. Nigam, S. N., and Ressler, C., 1966, Biosynthesis of 2,4-diaminobutyric acid from L-[3H]homoserine and DL-[l-14C]aspartic acid in Lathyrus sylvestris W., Biochemistry 5: 3426.PubMedCrossRefGoogle Scholar
  92. Okamoto, K., and Quastel, J. H., 1970, Tetrodotoxin-sensitive uptake of ions and water by slices of rat brain in vitro, Biochem. J. 120: 37.PubMedGoogle Scholar
  93. Olney, J. W., 1969, Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate, Science 164: 719.PubMedCrossRefGoogle Scholar
  94. Olney, J. W., 1971, Glutamate-induced neuronal necrosis in the infant mouse hypothalamus, J. Neuropathol. Exptl. Neurol. 30: 75.CrossRefGoogle Scholar
  95. Olney, J. W., and Sharpe, L. G., 1969, Brain lesions in an infant rhesus monkey treated with monosodiupi glutamate, Science 166: 386.PubMedCrossRefGoogle Scholar
  96. Olney, J. W., Ho, O. L., and Rhee, V., 1971, Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system, Exptl. Brain Res. 14: 61.CrossRefGoogle Scholar
  97. O’Neal, R. M., Chen, C.-H., Reynolds, C. S., Meghal, S. K., and Koeppe, R. E., 1968, The “neurotoxicity” of L-2,4-diaminobutyric acid, Biochem. J. 106: 699.PubMedGoogle Scholar
  98. Orrego, F., and Lipmann, F., 1967, Protein synthesis in brain slices, J. Biol. Chem. 242: 665.PubMedGoogle Scholar
  99. Oser, B. L., Carson, S., Vogin, E. E., and Cox, G. E., 1971, Oral and subcutaneous administration of monosodium glutamate to infant rodents and dogs, Nature (Lond.) 229: 411.CrossRefGoogle Scholar
  100. Perez, V. J., and Olney, J. W., 1972, Accumulation of glutamic acid in the arcuate nucleus of the hypothalamus of the infant mouse following subcutaneous administration of monosodium glutamate, J. Neurochem. 19: 1777.PubMedCrossRefGoogle Scholar
  101. Phillis, J. W., and Ochs, S., 1971, Excitation and depression of cortical neurones during spreading depression, Exptl. Brain Res. 12: 132.CrossRefGoogle Scholar
  102. Polsky, F. I., Nunn, P. B., and Bell, E. A., 1972, Distribution and toxicity of α-amino-ß- aminopropionic acid, Fed. Proc. 31: 1473.PubMedGoogle Scholar
  103. Potts, A. M., Modrell, K. W., and Kingsbury, C., 1960, Permanent fractionation of the electroretinogram by sodium glutamate, Am. J. Ophthalmol. 50: 900.PubMedGoogle Scholar
  104. Prabhu, V. G., and Oester, Y. T., 1971, Neuromuscular functions of mature mice following neonatal monosodium glutamate, Arch. Int. Pharmacodyn. Therap. 189: 59.Google Scholar
  105. Prosky, L., and O’Dell, R. G., 1971, Effect of dietary monosodium L-glutamate on some brain and liver metabolites in rats, Proc. Soc. Exptl. Biol. Med. 138: 517.Google Scholar
  106. Przybylska, J., and Pawelkiewicz, J., 1965, O-Oxalylhomoserine, a new homoserine derivative in young pods of Lathyrus sativus, Bull. Acad. Pol. Sci. 13: 327.Google Scholar
  107. Ramsey, R. L., and Mcllwain, H., 1970, Calcium content and exchange in neocortical tissues during the cation movements induced by glutamates, J. Neurochem. 17: 781.PubMedCrossRefGoogle Scholar
  108. Rao, S. L. N., Adiga, P. R., and Sarma, P. S., 1964, The isolation and characterization of ß- N-oxalyl-L-α,β-diaminopropionic acid: A neurotoxin from the seeds of Lathyrus sativus, Biochemistry 3: 432.CrossRefGoogle Scholar
  109. Rao, S. L. N., Malathi, K., and Sarma, P. S., 1969, Lathyrism, World Rev. Nutr. Diet. 10: 214.PubMedGoogle Scholar
  110. Ressler, C., 1962, Isolation and identification from common vetch of the neurotoxin O-cyano- L-alanine, a possible factor in neurolathyrism, J. Biol. Chem. 237: 733.PubMedGoogle Scholar
  111. Ressler, C., and Koga, T., 1971, α-Cyanoamino acids and related nitriles as inhibitors of glutamate decarboxylase, Biochim. Biophys. Acta 242: 473.Google Scholar
  112. Ressler, C., Redstone, P. A., and Erenberg, R. H., 1961, Isolation and identification of a neuroactive factor from Lathyrus latifolius, Science 134: 188.Google Scholar
  113. Ressler, C., Nigam, S. N., Giza, Y.-H., and Nelson. J., 1963. Isolation and identification from common vetch of γ-L-glutamyl-ß-cyano-L-alanine, a bound form of the neurotoxin ß- cyano-L-alanine, J. Am. Chem. Soc. 85: 3311.CrossRefGoogle Scholar
  114. Roberts, E., and Simonsen, D. G., 1970, Some properties of cyclic 3’,5’ -nucleotide phosphodiesterase of mouse brain: Effects of imidazole-4-acetic acid, chlorpromazine, cyclic 3’,5’-GMP and other substances, Brain Res. 24: 91.PubMedCrossRefGoogle Scholar
  115. Rowe, B. W., and Meister, A., 1970, Identification of L-methionine-S-sulphoximine as the convulsant isomer of methionine sulphoximine, Proc. Natl. Acad. Sci. 66: 500.PubMedCrossRefGoogle Scholar
  116. Rowe, W. B., Ronzio, R. A., and Meister, A., 1969, Inhibition of glutamine synthetase by methionine sulfoximine: Studies on methionine sulfoximine phosphate, Biochemistry 8: 2674.PubMedCrossRefGoogle Scholar
  117. Roy, D. N., 1969, Biosynthesis of ß-oxalylaminoalanine: Evidence that serine is not the precursor, Indian J. Biochem. Biophys. 6: 147.Google Scholar
  118. Rukmini, C., 1968, Isolation and purification of a new toxic factor from Lathyrus sativus, Indian J. Biochem. Biophys. 5: 182.Google Scholar
  119. Sarma, P. S., and Padmanaban, G., 1969, Lathyrogens, in: Toxic Constituents of Plant Food-stuffs ( I. E., Liener, ed.) pp. 267–291, Academic Press, New York.Google Scholar
  120. Sashchenko, L. P., Severin, E. S., and Khomutov, R. M., 1968, Inhibition of L-glutamic acid decarboxylase by hydroxylamine derivatives, Biokhimiya 33: 142.Google Scholar
  121. Schaumburg, H. H., Byck, R., Gerstl, B. R., and Mashman, J. H., 1969, Monosodium L- glutamate: Its pharmacology and role in the Chinese restaurant syndrome, Science 163: 826.PubMedCrossRefGoogle Scholar
  122. Scotti de Carolis, A., Lipparini, F., and Longo, V. G., 1969, Neuropharmacological investigations on muscimol, a psychotropic drug extracted from Amanita muscaria Psychopharmacologia 15: 186.Google Scholar
  123. Sellinger, O. Z., Azcurra, J. M., and Ohlsson, W. G., 1968, Methionine sulfoximine seizures. VIII. Dissociation of the convulsant and glutamine synthetase inhibitory effects, J. Pharmacol. Exptl. Therap. 164: 212.Google Scholar
  124. Selye, H., 1957, Lathyrism, Rev. Can. Biol. 16: 1.PubMedGoogle Scholar
  125. Severin, E. A., Sashchenko, L. P., Kovaleva, G. K., and Khomutov, R. M., 1968, An effective inhibitor of γ-aminobutyrate transaminase, Biokhimiya 33: 1210.Google Scholar
  126. Shinozaki, H., and Konishi, S., 1970, Actions of several anthelmintics and insecticides on rat cortical neurones, Brain Res. 24: 368.PubMedCrossRefGoogle Scholar
  127. Small, N. A., Holton, J. B., and Ancill, R. J., 1970, In vitro inhibiton of serotonin and γ- aminobutyric acid synthesis in rat brain by histidine metabolites, Brain. Res. 21: 55.PubMedCrossRefGoogle Scholar
  128. Sprince, H., Parker, C. M., and Josephs, J. A., 1969a, Homocysteine-induced convulsions in the rat: Protection by homoserine, serine, betaine, glycine and glucose, Agents Actions 1: 9.PubMedCrossRefGoogle Scholar
  129. Sprince, H., Parker, C. M., Josephs, J. A., and Magazino, J., 19696, Convulsant activity of homoserine and other short-chain mercaptoacids: Protection therefrom, Ann. N.Y. Acad. Sci. 166: 323.Google Scholar
  130. Stegink, L. D., Filer, L. J., and Baker, G. L., 1972, Monosodium glutamate: Effect on plasma and breast milk amino acid levels in lactating women, Proc. Soc. Exptl. Biol. Med. 140: 836.Google Scholar
  131. Stewart, C. N., Coursin, D. B., and Bhagavan, H. N., 1972, Electroencephalographic study of L-glutamate induced seizures in rats, Toxicol. Appl. Pharmacol. 23: 635.PubMedCrossRefGoogle Scholar
  132. Tewari, S., and Baxter, C. F., 1969, Stimulatory effect of γ-aminobutyric acid upon amino acid incorporation into protein by a ribosomal system from immature rat brain, J. Neurochem. 16: 171.PubMedCrossRefGoogle Scholar
  133. Theobald, W., Büch, O., Kuntz, H. A., Krupp, P., Stenger, E. G., and Heimann, H., 1968, Pharmakologische und experimentalpsychologische Untersuchungen mit 2 Inhaltsstoffen des Fliegenpilzes (Amanita muscaria), Arzneim.-Forsch. 18: 311.Google Scholar
  134. Thurston, J. H., and Warren, S. K., 1971, Permeability of the blood-brain barrier to monosodium glutamate and effects on the components of the energy reserve in newborn mouse brain, J. Neurochem. 18: 2241.PubMedCrossRefGoogle Scholar
  135. Tunnicliff, G., Wein, J., and Roberts, E., 1972, Effects of imidazole-acetic acid on brain amino acids and body temperature in mice, J. Neurochem. 19: 2017.PubMedCrossRefGoogle Scholar
  136. van den Berg, C. J., 1973, A model of compartmentation in mouse brain based on glucose and acetate metabolism, in: Metabolic Compartmentation in the Brain ( R. Balázs and J. E. Cremer, eds.) pp. 129–136, Macmillan, London.Google Scholar
  137. Van Harreveld, A., 1959, Compounds in brain extracts causing spreading depression of cerebral cortical activity and contraction of crustacean muscle, J. Neurochem. 3: 300.CrossRefGoogle Scholar
  138. Van Harreveld, A., and Fifkova, E., 1971, Effects of glutamate and other amino acids on the retina, J. Neurochem. 18: 2145.PubMedCrossRefGoogle Scholar
  139. Vega, A., Bell, E. A., and Nunn, P. B., 1968, The preparation of L- and D-α-amino-ß- methylaminopropionic acids and the identification of the compound isolated from Cycas circinalis as the L-isomer, Phytochemistry 7: 1885.CrossRefGoogle Scholar
  140. Vivanco, F., Ramos F., and Jimenez-Diaz, C., 1966, Determination of γ-aminobutyric acid and other free amino acids in whole brains of rats poisoned with ß,ß’- iminodipropionitrile and α,γ-diaminobutyric acid with, or without, administration of thyroxine, J. Neurochem. 13: 1461.PubMedCrossRefGoogle Scholar
  141. Waeisch, H., and Price, J.C., 1944, Biochemical aspects of glutamic acid therapy for epilepsy, Arch. Neurol. Psychol. 51: 393.CrossRefGoogle Scholar
  142. Walker, R. J., Woodruff, G. N., and Kerkut, G. A., 1971, The effect of ibotenic acid and muscimol on single neurons of the snail Helix aspera, Comp. Gen. Pharmacol. 2: 168.PubMedCrossRefGoogle Scholar
  143. Waser, P. G., 1967, The pharmacology of Amanita muscaria, in: Ethnopharmacological Search for Psychoactive Drugs (D. H. Efron, B. Holmstedt, and N. S. Kline, eds. pp. 419–438. U.S. Public Health Service Publication No. 1645, Washington, D.C.Google Scholar
  144. Watkins, J. C., Curtis, D. R., and Biscoe, T. J., 1966, Central effects of β-N-oxalyl-α,β- diaminopropionic acid and other Lathyrus factors, Nature (Lond.) 211: 637.CrossRefGoogle Scholar
  145. Whiting, M. G., 1963, Toxicity of cycads, Econ. Bot. 17: 271.CrossRefGoogle Scholar
  146. Wieland, T., 1968, Poisonous principle of mushrooms of the genus Amanita, Science 159: 946.PubMedCrossRefGoogle Scholar
  147. Wieland, T., and Wieland, O., 1972, The toxic peptides of Amanita species, in: Microbial Toxins, Vol. 8, ( S. Kadis, A. Ciegler, and S. J. Ajl, eds.) pp. 249–280, Academic Press, New York.Google Scholar
  148. Wolfe, L. S., and Elliott, K. A. C., 1962, Chemical studies in relation to convulsive disorders, in: Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.) pp. 694–727,Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Graham A. R. Johnston
    • 1
  1. 1.Department of PharmacologyAustralian National UniversityCanberraAustralia

Personalised recommendations