• Jose del Castillo
  • Margaret Anderson


The word curare, like its synonyms curari, huareli, woorari, and woorali, stems from the native names given to plant extracts that Indians of the Amazon and Orinoco valleys and the Guianas have used for centuries as arrow poisons. Small bamboo darts, whose tips are coated with a brownish layer of “flying death,” are shot from blowguns. The typical result is rapid paralysis and death of the animals that are hit. There are several advantages to curare as an arrow poison for hunting. For example, it is highly potent, and its effects are rapid. Furthermore, meat from animals killed with it can be eaten without danger, because the active principles of the poison are not absorbed from the digestive tract.


Cholinergic Receptor Anionic Site Neuromuscular Transmission Electric Organ Neuromuscular Blocking Agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. D., and Lucas, K., 1912, On the summation of propagated disturbances in nerve and muscle, J. Physiol. (Lond.) 44: 68.Google Scholar
  2. Alam, M., Anrep, G. V., Barsoum, G. S., Talaat, M., and Wieninger, E., 1939, Liberation of histamine from skeletal muscle by curare, J. Physiol. (Lond.) 95: 148.Google Scholar
  3. Albe-Fessard, D., and Chagas, C., 1951, Action d’une substance curarisante sur la decharge electrique de l’Electrophorus electricus L., Compt. Rend. Seanc. Soc. Biol. (Paris) 145: 248.Google Scholar
  4. Altamirano, M., Schleyer, W., Coates, C. W., and Nachmansohn, D., 1955, Electrical activity in electric tissue. I. The difference between tertiary and quaternary nitrogen compounds in relation to their chemical and electrical activities, Biochem. Biophys. Acta 16: 268.PubMedCrossRefGoogle Scholar
  5. Alvarez, M. C., del Castilo, J., and Sanchez, V., 1969, Pharmacological responses of the dorsal longitudinal muscle of Sabellastarte magnijica, Comp. Biochem. Physiol. 29: 931.CrossRefGoogle Scholar
  6. Anderson, P., and Curtis, D. R., 1964, The pharmacology of the synaptic and acetylcholine- induced excitation of ventrobasal thalamic neurones, Acta Physiol. Scand. 61: 100.CrossRefGoogle Scholar
  7. Aliens, E. J., van Rossum, J. M., and Simonis, A. M., 1956, A theoretical basis of molecular pharmacology, Part I: Interactions of one or two compounds with one receptor system, Arzneim. Forsch. 6: 282.Google Scholar
  8. Armett, C. J., and Ritchie, J. M., 1960, The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by an anticholinesterase, J. Physiol. (Lond.) 152: 141.Google Scholar
  9. Armett, C. J., and Ritchie, J. M., 1961, The action of acetylcholine and some related substances on conduction in mammalian non-myelinated nerve fibres, J. Physiol. (Lond.) 155: 372.Google Scholar
  10. Ascher, P., 1968, Electrophoretic injections of dopamine on Aplysia neurones, J. Physiol. (Lond.) 198: 48 P.Google Scholar
  11. Ascher, P., 1972, Inhibitory and excitatory effects of dopamine on Aplysia neurones, J. Physiol. (Lond.) 255: 173.Google Scholar
  12. Auerbach, A., and Betz, W., 1971, Does curare effect transmitter release? J. Physiol. (Lond.) 213: 691.Google Scholar
  13. Axelsson, J., and Thesleff, S., 1959, A study of supersensitivity in denervated mammalian skeletal muscle, J. Physiol. (Lond.) 147: 178.Google Scholar
  14. Bacq, Z., 1935, Recherches sur la Physiologie et la pharmacologic du systeme nerveux autonome. XVII. Les esters de la choline dans les extraits de tissu des Invertebres, Arch. Internat. Physiol. 42: 24.Google Scholar
  15. Bacq, Z., 1947, L’acetylcholine et l’adrenaline chez les Invertebres, Biol. Rev. 22: 73.PubMedCrossRefGoogle Scholar
  16. Bacq, Z., and Copee, G., 1937, Reaction des Vers et des Mollusques à Peserine: Existence de nerfs cholinergiques chez les Vers, Arch. Internat. Physiol. 45: 310.Google Scholar
  17. Bamford, D. G., Biggs, D. F., Chaplen, P., Davis, M., and Maconochie, J., 1972, A novel monoquaternary neuromuscular blocking agent, Experientia 28: 1069.PubMedCrossRefGoogle Scholar
  18. Banerjee, U., Feldberg, W., and Georgiev, V. P., 1970, Microinjections of tubocurarine, leptazol, strychnine and Picrotoxin into the cerebral cortex of anaesthetized cats, Brit. J. Pharmacol. 40: 6.CrossRefGoogle Scholar
  19. Barker, D. L., Herbert, E., Hildebrand, J. G., and Kravitz, E. A., 1972, Acetylcholine and lobster sensory neurones, J. Physiol. (Lond.) 226: 205.Google Scholar
  20. Barlow, R. B., 1964, Introduction to Chemical Pharmacology, Methuen, London.Google Scholar
  21. Barlow, R. B., and Ing, H. R., 1948a, Curare-like action of polymethylene bis-quaternary ammonium salts, Nature (Lond.) 161: 718.CrossRefGoogle Scholar
  22. Barlow, R. B., and Ing, H. R., 1948 &, Curare-like action of polymethylene bis-quaternary ammonium salts, Brit. J. Pharmacol. 3: 298.Google Scholar
  23. Barlow, R. B., and Zoller, A., 1964, Some effects of long chain polymethylene bisonium salts on junctional transmission in the peripheral nervous system, Brit. J. Pharmacol. 23: 131.PubMedGoogle Scholar
  24. Barnard, E. A., Wieckowski, J., and Chiu, T. H., 1971, Cholinergic receptor molecules and Cholinesterase molecules at mouse skeletal muscle junctions, Nature (Lond.) 234: 207.CrossRefGoogle Scholar
  25. Barneby, R. C., and Krukoff, B. A., 1971, Supplementary notes on American Menispermaceae: VIII. A generic survey of the American Triclisieae and Anomospermeae, Mem. N.Y. Bot. Gard. 22: 1.Google Scholar
  26. Beani, L., Bianchi, C., and Ledda, F., 1964, The effect of tubocurarine on acetylcholine release from motor nerve terminals, J. Physiol. (Lond.) 174: 172.Google Scholar
  27. Beränek, R., and VyskoCil, F., 1967, The action of tubocurarine and atropine on the normal and denervated rat diaphragm, J. Physiol. (Lond.) 188: 53.Google Scholar
  28. Bernard, C., 1857, Legons sur les Effets des Substances Toxiques et Medicamenteuses, J.-B. Bailliere et Fils, Paris.CrossRefGoogle Scholar
  29. Bhargava, V. K., and Meldrum, B. S., 1969, The strychnine-like action of curare and related compounds on the somatosensory evoked response of the rat cortex, Brit. J. Pharmacol. 37: 112.CrossRefGoogle Scholar
  30. Blaber, L. C., 1970, The effect of facilitatory concentrations of decamethonium on the storage and release of transmitter at the neuromuscular junction of the cat, J. Pharmacol. Exptl. Therap. 175: 664.Google Scholar
  31. Blaber, L. C., 1972, The mechanism of the facilitatory action of edrophonium in cat skeletal muscle, Brit. J. Pharmacol. 46: 498.CrossRefGoogle Scholar
  32. Boehm, R., 1920, Curare und Curarealkaloide, in: Hefters Handbuch der experimentelle Pharmakologie, Vol. 2, pp. 179–248, Springer, Berlin.Google Scholar
  33. Bovet, D., 1951, Some aspects of the relationship between chemical constitution and curare- like activity, Ann. N.Y. Acad. Sci. 54: 407.PubMedCrossRefGoogle Scholar
  34. Bovet, D., Courvoiser, S., Ducrot, R., and Horclois, R., 1946, Proprietes curarisantes du diiodoethylate de bis (quinoleyloxy-8’)-l,5-pentane, Compt. Rend. Acad. Sci. (Paris) 223: 597.Google Scholar
  35. Bovet, D., Bovet-Nitti, F., Guarino, S., Longo, V. G., and Fusco, R,. 1951, Recherches sur les poisons curarisants du synthese. III Partie: Succinylcholine et derives aliphatiques, Arch. Int. Pharmacodyn. Therap. 88: 1.Google Scholar
  36. Bovet, D., Bovet-Nitti, F., Bettschart, S., and Scognamiglio, W., 1956, Mecanisme de la potentialisation par la chlorhydrate de diethylamino-ethyldiphenylpropylacetate des effets de quelques agents curarisants, Helv. Physiol. Acta 14: 430.Google Scholar
  37. Bovet, D., Bovett-Nitti, F., and Marini-Bettòlo, G. B., eds., 1959, Curare and Curare-like Agents, Elsevier, Amsterdam.Google Scholar
  38. Bovet-Nitti, F., 1959, Les curares à brève durèe d’action, in: Curare and Curare-like Agents ( D. Bovet, F., Bovet-Nitti, and G. B. Marini-Bettòlo, eds.) pp. 230–244, Elsevier, Amsterdam.Google Scholar
  39. Bowman, W. C., and Raper, C., 1965, The effects of sympathomimetic amines on chronically denervated skeletal muscles, Brit. J. Pharmacol. 24: 98.PubMedGoogle Scholar
  40. Brieger, L., 1886, Untersuchungen über Ptomaine, Vol. III, A. Hirschwald, Berlin.Google Scholar
  41. Brittain, R. T., and Tyers, M. B., 1972, AH 8165: A new short-acting, competitive neuromuscular blocking drug, Brit. J. Pharmacol. 45: 158 P.Google Scholar
  42. Brown, G. L., Paton, W. D. M., and Vianna Dias, M., 1949, The depression of the demarcation potential of cat’s tibialis by bistrimethylammonium decane diiodide (C10). J. Physiol. (Long.) 109: 15 P.Google Scholar
  43. Brücke, F., 1956, Dicholinesters of a,a;-dicarboxylic acids and related substances, Pharmacol. Rev. 8: 265.PubMedGoogle Scholar
  44. Buckett, W. R., Marjorbanks, C. E., and Morton, M. B., 1968, The pharmacology of pancuronium bromide (Org. NA97), a new potent steroid neuromuscular blocking agent, Brit. J. Pharmacol. 32: 671.PubMedGoogle Scholar
  45. Burgen, A. V. S., 1970, The nature of complex formation, in: Molecular Properties of Drug Receptors, A Ciba Foundation Symposium ( R. Porter and M. O’Connor, eds.) pp. 263–269, J. & A. Churchill, London.Google Scholar
  46. Burn, J., and Dale, H. H., 1915, The action of certain quaternary ammonium bases, J. Pharmacol. Exptl. Therap. 6: 417.Google Scholar
  47. Bums, B. D., and Paton, W. D. M., 1951, Depolarization of the motor end-plate by decamethonium and acetylcholine, J. Physiol. (Lond.) 115: 41.Google Scholar
  48. Callec, J. J., and Boistel, J., 1967, Les effets de F acetylcholine aux niveaux synaptique et somatique dans le cas du dernier ganglion abdominal de la blatte Periplaneta americana, Compt. Rend. Seanc. Soc. Biol. (Paris) 161: 442;Google Scholar
  49. Castillo, J. C., and de Beer, E. J., 1950, The neuromuscular blocking action of succinylcholine (diacetylcholine), J. Pharmacol. Exptl. Therap. 99: 458.Google Scholar
  50. Castillo, J. C., Phillips, A. P., and De Beer, E. J., 1949, Curariform action of decamethylene- 1,10-bis-trimethylammonium bromide, J. Pharmacol. Exptl. Therap. 97: 150.Google Scholar
  51. Cavillito, C. J., 1962, Structure-action relations throwing light on the receptor, in: Curare and Curare-like Agents, Ciba Foundation Study Group No. 12 (A. V. S. de Reuck, ed.) pp. 55–74, Little, Brown, Boston.Google Scholar
  52. Cavillito, C. J., 1967, Bonding characteristics of acetylcholine simulants and antagonists and cholinergic receptors, Ann. N.Y. Acad. Sci. 144: 900.CrossRefGoogle Scholar
  53. Chagas, C., 1962, The fate of curare during curarization, in: Curare and Curare-like Agents, Ciba Foundation Study Group No. 12 (A. V. S. de Reuck, ed.) pp. 2–20, Little, Brown, Boston.Google Scholar
  54. Chagas, C., and Albe-Fessard, D., 1954, Action de divers curarisants sur l’organe electrique de FElectrophorus electricus (Linnaeus), Acta Physiol. Latinoam. 4: 49.Google Scholar
  55. Chagas, C„ Bovet, D., and Sollero, L., 1953, Curarisation musculaire et curarisation electrique chez le poisson Electrophorus electricus, Compt. Rend. Acad. Sci. (Paris) 236: 1997.Google Scholar
  56. Changeux, J.-P., 1969, Remarks on the symmetry and cooperative properties of biological membranes, in: Symmetry and Function of Biological Membranes at the Macromolecular Level, ( A. Engström and B. Strandberg, eds.) pp. 235–256, Wiley, New York.Google Scholar
  57. Changeux, J.-P., and Podleski, T. R., 1968, On the excitability and cooperativity of the electro plax membrane. Proc. Natl. Acad. Sci. 59: 944.PubMedCrossRefGoogle Scholar
  58. Changeux, J.-P., Thiery, J., Tung, Y., and Kittel, C., 1967, On the cooperativity of biological membranes, Proc. Natl. Acad. Sci. 57: 335.PubMedCrossRefGoogle Scholar
  59. Cheymol, J., 1949, Curares naturels et curares de synthese, in: Actualites Pharmacologiques, Vol. 1 (R. Hazard, ed.) Masson et Cie, Paris.Google Scholar
  60. Cheymol. J., and Bourillet, F., 1960. Curarizing substances and those modifying curarization, Actual. Pharmacol. 13: 63.Google Scholar
  61. Cheymol, J., Delaby, R., Chabrier, P., Najer, H., and Bourillet, F., 1954, Activité acetylcholinomimètique de quelques derives de la carbaminoylcholine, Arch. Int. Pharmacodyn. Therap. 98: 161.Google Scholar
  62. Cheymol, J., Bourillet, F., and Lavassort, C., 1955, Action anti-curarimimétique de Fheparine et d’héparinöides de synthèse chez le lapin, J. Physiol. (Paris) 47: 132.Google Scholar
  63. Colhoun, E. H., 1963, The physiological significance of acetylcholine in insects and observations upon other pharmacologically active substances, Advan. Insect Physiol. 1: 1.CrossRefGoogle Scholar
  64. Cowan, S. L., 1936, The initiation of all-or-none responses in muscle by acetylcholine, J. Physiol. (Lond.) 88: 3 P.Google Scholar
  65. Craig, L. E., 1955, Curare-like effects, in: The Alkaloids: Chemistry and Physiology, Vol. V (R. H. F. Manske, ed.) Chap. 46, pp. 265–293, Academic Press, New York.Google Scholar
  66. Crum-Brown, A., and Fräser, T. R., 1868, On the connection between chemical constitution and physiological action. Part I. On the physiological action of the salts of ammonium bases derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia, Trans. Roy. Soc. Edinb. 25: 151.CrossRefGoogle Scholar
  67. Crum-Brown, A., and Fräser, T. R., 1869, On the connection between chemical constitution and physiological action. Part II. On the physiological action of the ammonium bases derived from atropia and conia, Trans. Roy. Soc. Edinb. 25: 693.CrossRefGoogle Scholar
  68. Dale, H. H., 1914-1915, The action of certain esters and ethers of choline and their relation to muscarone, J. Pharmacol. Exptl. Therap. 6: 147.Google Scholar
  69. Dale, H. H., Feldberg, W., and Vogt, M., 1936, Release of acetylcholine at voluntary motor nerve endings, J. Physiol. (Lond.) 86: 353.Google Scholar
  70. de Beer, E. J., 1959, The chemistry of the muscle relaxants, Anesthesiology 20: 416.CrossRefGoogle Scholar
  71. del Castillo, J., and Katz, B., 1955, On the localization of acetylcholine receptors, J. Physiol. (Lond.) 128: 157.Google Scholar
  72. del Castillo, J., and Katz, B., 1957a, A study of curare action with an electrical micromethod, Proc. Roy. Soc. Lond. Ser. B 146: 339.CrossRefGoogle Scholar
  73. del Castillo, J., and Katz, B., 1957 &, Interaction at end-plate receptors between different choline derivatives, Proc. Roy. Soc. Lond. Ser. B 146: 369.Google Scholar
  74. del Castillo, J., and Sobrino, J. A., 1973, Carbonyl binding sites in the cholinergic receptors of the motor-end-plate. Internat. J. Neurosci. 6: 67.CrossRefGoogle Scholar
  75. del Castillo, J., and Stark, L., 1952, The effect of calcium ions on the motor end-plate potentials, J. Physiol. (Lond.) 116: 507.Google Scholar
  76. del Castillo, J., de Mello, W. C., and Morales, T., 1967, The initiation of action potentials in the somatic musculature of Ascaris lumbricoides, J. Exptl. Biol. 46: 263.Google Scholar
  77. del Castillo, J., Escobar, I., and Gijon, E., 1971, Effects of the electrophoretic application of sulfhydryl reagents to the end-plate receptors, Internat. J. Neurosci. 1: 199.CrossRefGoogle Scholar
  78. del Castillo, J., Bartels, E., and Sobrino, J. A., 1972, Microelectrophoretic application of cholinergic compounds, protein oxidizing agents, and mercurials to the chemically excitable membrane of the electroplax, Proc. Natl. Acad. Sci. 69: 2081.PubMedCrossRefGoogle Scholar
  79. del Castillo-Nicolau, J., 1948, Acciones centrales de la myanesina, Trab. Inst. Nac. Cien. Med. 12: 363.Google Scholar
  80. de Reuck, A. V. S., ed., 1962, Curare and Curare-like Agents, Ciba Foundation Study Group No. 12, Little, Brown, Boston. Dettbarn, W. D., 1960, Effect of curare on conduction in myelinated, isolated nerve fibers of the frog, Nature (Lond.) 186:891.Google Scholar
  81. Dettbarn, W. D., 1967, The acetylcholine system in peripheral nerve, Ann. N.Y. Acad. Sci. 144: 483.CrossRefGoogle Scholar
  82. Dettbarn, W. D., and Davis, F. A., 1962, Effect of acetylcholine on the electrical activity of somatic nerves of the lobster, Science 136: 716.PubMedCrossRefGoogle Scholar
  83. Dettbarn, W. D., and Davis, F. A., 1963, Effects of acetylcholine on axonal conduction of lobster nerve, Biochim. Biophys. Acta 66: 397.PubMedCrossRefGoogle Scholar
  84. Dikshit, B. B., 1934, The production of cardiac irregularities by excitation of the hypothalamic centres, J. Physiol. (Lond.) 81: 382.Google Scholar
  85. Dowdy, E. G., Holland, W. C., Yamanaka, I., and Kaya, K., 1971, Cardioactive properties of d-tubocurarine with and without preservatives, Anesthesiology 34: 257.CrossRefGoogle Scholar
  86. Dretchen, K. L., Sokoll, M. D., Gergis, S. D., and Long, J. P., 1972, Effects of pancuronium on the motor nerve terminal, Europ. J. Pharmacol. 20: 46.CrossRefGoogle Scholar
  87. Du Bois-Reymond, E., 1881, Dr. Carl Sachs: Untersuchungen am Zitteraal Gymnotus electricus, Veit, Leipzig.Google Scholar
  88. Eccles, J. C., and O’Connor, W. J., 1939, Responses which nerve impulses evoke in mammalian striated muscles, J. Physiol. (Lond.) 97: 44.Google Scholar
  89. Eccles, J. C., Katz, B., and Kuffler, S. W., 1941, Nature of the “end-plate potential” in curarized muscle, J. Neurophysiol. 4: 362.Google Scholar
  90. Eccles, J. C., Katz, B., and Kuffler, S. W., 1942, Effect of eserine on neuromuscular transmission, J. Neurophysiol. 5: 211.Google Scholar
  91. Eccles, J. C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones, J. Physiol. (Lond.) 126: 524.Google Scholar
  92. Eccles, J. C., Eccles, R. M., and Fatt, P., 1956, Pharmacological investigations on a central synapse operated by acetylcholine, J. Physiol. (Lond.) 131: 154.Google Scholar
  93. Edwards, C., Bunch, W., Marfey, P., Marois, R., and Van Meter, D., 1970, Studies on the chemical properties of the acetylcholine receptor site of the frog neuromuscular junction, J. Membrane Biol. 2: 119.CrossRefGoogle Scholar
  94. Faeder, I. R., O’Brien, R. D., and Salpeter, M. M., 1970, A re-investigation of evidence for cholinergic neuromuscular transmission in insects, J. Exptl. Zool. 173: 187.CrossRefGoogle Scholar
  95. Fänge, R., 1962, Pharmacology of Poikilothermie vertebrates and invertebrates, Pharmacol. Rev. 4: 281.Google Scholar
  96. Fatt, P., and Katz, B., 1951, An analysis of the end-plate potential recorded with an intracellular electrode, J. Physiol. (Lond.) 115: 320.Google Scholar
  97. Feldberg, W., 1963, A Pharmacological Approach to the Brain from Its Inner and Outer Surface, Williams and Wilkins, Baltimore.Google Scholar
  98. Feldberg, W., and Sherwood, S. L., 1954, Behaviour of cats after intraventricular injections of eserine and DFP, J. Physiol. (Lond.) 125: 488.Google Scholar
  99. Feng, T. P., and Li, T. H., 1941, Studies on the neuromuscular junction, XXIII. A new aspect of the phenomena of eserine potentiation and posttetanic facilitation in mammalian muscles, Chin. J. Physiol. 16: 37.Google Scholar
  100. Ferry, C. B., and Marshall, A. R., 1973, An anti-curare effect of hexamethonium at the mammalian neuromuscular junction, Brit. J. Pharmacol. 47: 353.CrossRefGoogle Scholar
  101. Flacke, W., and Yeoh, T. S., 1968, Differentiation of acetylcholine and succinylcholine receptors in leech muscle, Brit. J. Pharmacol. 33: 154.PubMedGoogle Scholar
  102. Friedman, K. J., and Carlson, A. D., 1970, The effects of curare in the cockroach. II. Blockage of nerve impulses by dTC, J. Exptl. Biol. 52: 593.Google Scholar
  103. Futamachi, K. J., 1972, Acetylcholine: Possible neuromuscular transmitter in crustacea, Science 175: 1373.PubMedCrossRefGoogle Scholar
  104. Galindo, A., 1971, Prejunctional effect of curare: Its relative importance, J. Neurophysiol. 34: 289.PubMedGoogle Scholar
  105. Galindo, A., 1972, Curare and pancuronium compared: Effects on previously undepressed mammalian myoneural junctions, Science 178: 753.PubMedCrossRefGoogle Scholar
  106. Gaskell, J. F., 1914, The chromaffin system of annelids and the relation of this system to the contractile vascular system in the leech, Hirudo medicinalis, Phil. Trans. Roy. Soc. Lond. Ser. B. 205: 153.CrossRefGoogle Scholar
  107. Gergis, S. D., Dretchen, K. L., Sokoll, M. D., and Long, J. P., 1971, The effect of neuromuscular blocking agents on acetylcholine release, Proc. Soc. Exptl. Biol. Med. 138: 693.Google Scholar
  108. Gerschenfeld, H. M., 1970, Acetylcholine transmission at central synapses of Mollusca, a survey, in: Structure and Function of Synapses (G. D. Pappas and D. Purpura, eds.) Chap. 9, Raven Press, New York.Google Scholar
  109. Gerschenfeld, H. M., 1971, Serotonin: Two different inhibitory actions on snail neurones, Science 171: 1252.PubMedCrossRefGoogle Scholar
  110. Gerschenfeld, H. M., 1973, Chemical transmission in invertebrate central nervous systems and neuromuscular junctions, Physiol. Rev. 53: 1.PubMedGoogle Scholar
  111. Gill, E. W., 1959, Inter-quaternary distance and ganglion-blocking activity in bis-quaternary compounds, Proc. Roy. Soc. Lond. Ser. B 150: 381.CrossRefGoogle Scholar
  112. Gill, E. W., and Ing, H. R., 1958, The problem of hexamethonium, II Farmaco (Sci. Ed.) 13: 244.Google Scholar
  113. Gill, R. C., 1940, White Water and Black Magic, Holt, New York.Google Scholar
  114. Ginetsinsky, A. G., and Shamarina, N. M., 1942, The tonomotor phenomenon in denervated muscle (D. S. I. R. Translation RTS 1710), Advan. Mod. Biol. (USSR) 15: 283.Google Scholar
  115. Glick, D., 1941, Some additional observations on the specificity of Cholinesterase, J. Biol. Chem. 137: 357.Google Scholar
  116. Goldstein, A., Aronow, L., and Kaiman, S. M., 1968, Principles of Drug Action: The Basis of Pharmacology, Hoeber Medical Division, Harper and Row, New York.Google Scholar
  117. Göpfert, H., and Schaefer, H., 1938, Ueber den direkt und indirekt erregten Aktionstrom und die Funktion der motorischen Endplatte, Pflüger’s Arch. Ges. Physiol. 239: 597.CrossRefGoogle Scholar
  118. Granier-Doyeux, M., 1951, Contribution al Estudio Historico, Geografico y Etnografico de los Curares, Caracas.Google Scholar
  119. Grob, D., Lilienthal, J. L., Jr., and Harvey, A. M., 1947, On certain vascular effects of curare in man: The “histamine” reaction, Bull. Johns Hopkins Hosp. 80: 299.PubMedGoogle Scholar
  120. Guyton, A. C., and Reeder, R. C., 1950, Quantitative studies on the autonomic actions of curare, J. Pharmacol. Exptl. Therap. 98: 188.Google Scholar
  121. Hammes, G. G., Molinoff, P. B., and Bloom, F. E., eds., 1973, Receptor biophysics and biochemistry, Neurosci. Res. Prog. Bull. 11:159.Google Scholar
  122. Hammond, P. H., Merton, P. A., and Sutton, G. G., 1956, Nervous gradation of muscular contraction, Brit. Med. Bull. 12: 214.PubMedGoogle Scholar
  123. Harvey, A. M., 1939, The actions of quinine on skeletal muscle, J. Physiol. (Lond.) 95: 45.Google Scholar
  124. Harvey, A. ML, 1940, The action of quinine methochloride on neuromuscular transmission, Bull. Johns Hopkins Hosp. 66: 52.Google Scholar
  125. Hassón, A., and Chagas, C., 1959, Selective capacity of components of the aqueous extract of the electric organ to bind curarizing quaternary ammonium derivatives, Biochim. Biophys. Acta. 36: 301.PubMedCrossRefGoogle Scholar
  126. Hassón, A., and Chagas, C., 1961, Purification of macromolecular components of the aqueous extract of electric organ [E. electricus (L.)] with binding capacity in vitro for quaternary ammonium bases, in: Bioelectrogenesis (C. Chagas and A. Paes de Carvalho, eds.) pp. 362–378, Elsevier, Amsterdam.Google Scholar
  127. Hazard, R., Savini, E., and Renier-Cornec, A., 1959, Augmentation par des doses minimes d’atropine de la sensibilité de Tintestin isole a l’acétylcholine, Arch. Int. Pharmacodyn. Therap. 120: 369.Google Scholar
  128. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1972, Convulsive properties of d-tubocurarin and cortical inhibition, Nature (Lond.) 240: 51.CrossRefGoogle Scholar
  129. Hoppe, J. O., 1950, A pharmacological investigation of 2,5-bis(3-diethylaminopropylamino)benzoquinone-bis-benzyl chloride (Win 2747): A new curarimimetic drug, J. Pharmacol. Exptl. Therap. 100: 333.Google Scholar
  130. Hu, J. H., 1972, Nature of postjunctional receptors, Am. J. Physiol. 223: 882.PubMedGoogle Scholar
  131. Hubbard, J. I., and Wilson, D. F., 1973, Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of d-tubocurarine, J. Physiol. (Lond.) 228: 307.Google Scholar
  132. Hubbard, J. I., Schmidt, R. F., and Yokota, T., 1965, The effect of acetylcholine upon mammalian motor nerve terminals, J. Physiol. (Lond.) 181: 810.Google Scholar
  133. Hunt, C. C., 1952, Drug effects on mammalian muscle spindles, Fed. Proc. 11: 75.Google Scholar
  134. Hunt, C. C., and Kuffler, S. W., 1950, Pharmacology of the neuromuscular junction, J. Pharmacol. Exptl. Therap. 98: 96.Google Scholar
  135. Hunt, R., and Taveau, R. de M., 1906, On the physiological action of certain choline derivatives and new methods for detecting choline, Brit. Med. J. 2: 1788.CrossRefGoogle Scholar
  136. Hutter, O. F., 1952, Post-tetanic restoration of neuromuscular transmission blocked by d-tubocurarine, J. Physiol. (Lond.) 118: 216.Google Scholar
  137. Ito, Y., Kuriyama, H., and Tashiro, N., 1969, Miniature excitatory junction potentials in the somatic muscle of the earthworm, Pheretima communissima, in sodium free solution, J. Exptl. Biol. 51: 107.Google Scholar
  138. Jarcho, L. W., Berman, B., Eyzaguirre, C., and Lilienthal, J. L., Jr., 1951, Curarization of denervated muscle, Ann. N.Y. Acad. Sci. 54: 337.PubMedCrossRefGoogle Scholar
  139. Jenkinson, D. H., 1960, The antagonism between tubocurarine and substances which depolarize the motor end-plate, J. Physiol. (Lond.) 152: 309.Google Scholar
  140. Kalow, W., 1959, The distribution, destruction and elimination of muscle relaxants, Anesthesiology 20: 505.PubMedCrossRefGoogle Scholar
  141. Kandel, E. R., Frazier, W. T., Waziri, R., and Coggeshall, R. E., 1967, Direct and common connections among the identified neurones in the abdominal ganglion of Aplysia, J. Neurophysiol. 30: 1352.PubMedGoogle Scholar
  142. Karis, J., Gissen, A. J., and Nastuk, W. L., 1966, Mode of action of diethyl-ether in blocking neuromuscular transmission.Anesthesiology 27: 42.Google Scholar
  143. Karis, J., Gissen, A. J., and Nastuk, W. L., 1966, Mode of action of deithyl-ether in blocking neuromuscular transmission, Anesthesiology 27: 42.PubMedCrossRefGoogle Scholar
  144. Karlin, A., 1973, Molecular interactions of the acetylcholine receptor, Fed. /Voc. 32: 1847.Google Scholar
  145. Karlin, A., and Bartels, E., 1966, Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax, Biochim. Biophys. Acta 126: 525.PubMedCrossRefGoogle Scholar
  146. Karlin, A., and Winnik, M., 1968, Reduction and specific alkylation of the receptor for acetylcholine, Proc. Natl. Acad. Sci. 60: 668.PubMedCrossRefGoogle Scholar
  147. Kasai, M., and Changeux, J.-P., 1971, In vitro excitation of purified membrane fragments by cholinergic agonists. III. Comparison of the dose-response curves to decamethonium with the corresponding binding curves of decamethonium to the cholinergic receptor, J. Membrane Biol. 6: 58.CrossRefGoogle Scholar
  148. Katz, B., 1939, The “anti-curare” action of a subthreshold catelectrotonus, J. Physiol. (Lond.) 95: 286.Google Scholar
  149. Katz, B., and Thesleff, S., 1957a, A study of the “desensitization” produced by acetylcholine at the motor end-plate, J. Physiol. (Lond.) 138: 63.Google Scholar
  150. Katz, B,. and Thesleff, S., 1957b, The interaction between edrophonium (Tensilon) and acetylcholine at the motor end-plate, Brit. J. Pharmacol. 12: 260.Google Scholar
  151. Kehoe, J. S., 1967, Pharmacological characteristics and ionic bases of a two component synaptic inhibition, Nature (Lond.) 215: 1503.CrossRefGoogle Scholar
  152. Kehoe, J. S., 1969, Single presynaptic neurone mediates a two component postsynaptic inhibition, Nature (Lond.) 221: 866.CrossRefGoogle Scholar
  153. Kehoe, J. S., 1972, Three acetylcholine receptors in Aplysia neurones, J. Physiol. (Lond.) 225: 115.Google Scholar
  154. Kensler, C. J., 1949, The antagonism of curare by congo red and related compounds, J. Pharmacol. Exptl. Therap. 95: 28.Google Scholar
  155. Kerkut, G. A., Pitman, R. M., and Walker, R. J., 1969, Sensitivity of neurones of the insect central nervous system to iontophoretically applied acetylcholine or GABA, Nature (Lond.) 222: 1075.CrossRefGoogle Scholar
  156. Khromov-Borisov, N. Y., and Michelson, M. J., 1966, The mutual disposition of cholino- receptors of locomotor muscles and the changes in their disposition in the course of evolution, Pharmacol. Rev. 18: 1051.PubMedGoogle Scholar
  157. Kimura, K. K., Unna, K., and Pfeiffer, C. C., 1948, Diatropine derivatives as proof that d-tubocurarine is a blocking moiety containing twin atropine-acetylcholine prosthetic groups, J. Pharmacol Exptl. Therap. 95: 149.Google Scholar
  158. King, H., 1935, Curare alkaloids. I. Tubocurarine, J. Chem. Soc. 1935: 1381.CrossRefGoogle Scholar
  159. Kirschner, L. B., and Stone, W. E., 1951, Action of inhibitors at the myoneural junction, J. Gen. Physiol. 34: 821.PubMedCrossRefGoogle Scholar
  160. Koelle, G..B., 1962, A new general concept of the neurohumoral functions of acetylcholine and acetylcholinesterase, J. Pharm. Pharmacol. 14: 65.PubMedCrossRefGoogle Scholar
  161. Koelle, G. B., 1970, Neuromuscular blocking agents, in: The Pharmacological Basis of Therapeutics, 4th ed. ( L. S. Goodman and A. Gilman, eds.) pp. 601–619, Macmillan, New York.Google Scholar
  162. Kreig, M. B., 1964, Green Medicine, Rand McNally, Chicago.Google Scholar
  163. Krnjevic, K., and Phillis, J. W., 1963, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (Lond.) 166: 328.Google Scholar
  164. Krukoff, B. A., and Moldenke, H. N., 1938, Studies of American Menispermaceae with special reference to species used in the preparation of arrow poisons, Brittonia 3: 1.CrossRefGoogle Scholar
  165. Kuffler, S. W., 1942, Electrical potential changes at an isolated nerve-muscle junction, J. Neurophysiol. 5: 18.Google Scholar
  166. Kuffler, S. W., 1943, Specific excitability of the endplate region in normal and denervated muscle, J. Neurophysiol. 6: 99.Google Scholar
  167. Kuffler, S. W., 1945, Electric excitability of nerve-muscle fibre preparations, J. Neurophysiol. 8: 77.Google Scholar
  168. Kuffler, S. W., Laporte, Y., and Ransmeier, R. E., 1947, The function of the frog’s small- nerve motor system, J. Neurophysiol. 10: 395.PubMedGoogle Scholar
  169. Langley, J. N., 1909, On the contraction of muscle, chiefly in relation to the presence of “receptive” substances. Part IV. The effect of curari and of some other substances on the nicotine response of the sartorius and gastrocnemius muscles of the frog, J. Physiol. (Lond.) 39: 235.Google Scholar
  170. Langley, J. N., 1918, On the stimulation and paralysis of nerve cells and nerve endings. Part II. Paralysis by curari, strychnine and brucine and its antagonism by nicotine, J. Physiol. (Lond.) 52: 247.Google Scholar
  171. Langley, J. N., and Kato, T., 1915, The physiological action of physostigmine and its action on denervated skeletal muscle, J. Physiol. (Lond.) 49: 410.Google Scholar
  172. Lapique, L., 1926, L’Excitabilite en Fonction du Temp; la Cronaxie, sa Signification et sa Mesure, Presses Universitäres de France, Paris.Google Scholar
  173. Larsen, J. R., Miller, D. M., and Yamamoto, T., 1966, d-Tubocurarine chloride: Effect on insects, Science 152: 225.Google Scholar
  174. Lehman, A. J., 1935-1936, Curare actions of erythrina alkaloids, Proc. Soc. Exptl. Biol. Med. 33: 501.Google Scholar
  175. Lester, H. A., 1972, Vulnerability of desensitized or curare-treated acetylcholine receptors to irreversible blockade by cobra toxin, Mol. Pharmacol. 8: 632.PubMedGoogle Scholar
  176. Lilleheil, G., and Naess, K., 1961, A presynaptic effect of d-tubocurarine in the neuromuscular junction, Acta Physiol. Scand. 52: 120.PubMedCrossRefGoogle Scholar
  177. Ling, G., and Gerard, R. W., 1949, The normal membrane potential of frog sartorius fibers, J. Cell. Comp. Physiol. 34: 383.CrossRefGoogle Scholar
  178. MacNutt, F. A., 1912, Translation of P. M. D’Anghera’s De Orbe Novo, G. P. Putnam’s Sons, New York.Google Scholar
  179. Manani, G., Galzigna, L., Mammona, S., and Gasparetto, A., 1972, Experimental and clinical study of the effects of pancuronium bromide, a neuromuscular blocking agent, Arzneim. Forsch. 22: 1528.Google Scholar
  180. Marsh, D. F., 1951, The pharmacology of calabash curare. Ann. N.Y. Acad. Sci. 54: 307.PubMedCrossRefGoogle Scholar
  181. Masland, R. L., and Wigton, R. S., 1940, Nerve activity accompanying fasciculation produced by prostigmin, J. Neurophysiol. 3: 269.Google Scholar
  182. Mats, M. N., 1972, Study of new curare-like agents of plant origin, Rastit. Resur. 8: 249.Google Scholar
  183. Maynard, E. A., and Maynard, D. M., 1960, Cholinesterase in the crustacean muscle receptor organ, J. Histochem. Cytochem. 8: 376.PubMedCrossRefGoogle Scholar
  184. McCann, F. V., 1966, Curare as a neuromuscular blocking agent in insects, Science 154: 1023.PubMedCrossRefGoogle Scholar
  185. McCann, F. V., and Reece, R. W., 1967, Neuromuscular transmission in insects: Effect of injected chemical agents, Comp. Biochem. Physiol. 21: 115.PubMedCrossRefGoogle Scholar
  186. Mclntyre, A. R., 1947, Curare: Its History, Nature, and Clinical Use, University of Chicago Press, Chicago.Google Scholar
  187. Mclntyre, A. R., King, R. E., and Dunn, A. L., 1945, Electrical activity of denervated mammalian skeletal muscle as influenced by d-tubocurarine, J. Neurophysiol. 8: 297.Google Scholar
  188. McLennan, H., and York, D. H., 1966, Cholinoceptive receptors of crayfish stretch receptor neurones, Comp. Biochem. Physiol. 17: 327.PubMedCrossRefGoogle Scholar
  189. Miguel, J., and Vela, R., 1953, Contribution española a la historia del curare, Hypnos (Official Bull. Spanish Ass. Anesthesiol. ), 1.Google Scholar
  190. Miledi, R., 1960, The acetylcholine sensitivity of frog muscle fibres after complete and partial denervation, J. Physiol. (Long.) 151: 1.Google Scholar
  191. Miledi, R., and Potter, L. T., 1971, Acetylcholine receptors in muscle fibers, Nature (Lond.) 233: 599.CrossRefGoogle Scholar
  192. Miner, R. W., Henegan, B. J., and Aeschlimann, J. A., eds., 1951, Curare and anti-curare agents, Ann. N.Y. Acad. Sci. 54:297.Google Scholar
  193. Nachmansohn, D., 1955, Metabolism and function of the nerve cell, in: Harvey Lectures 1953/1954, Vol. 49, pp. 57–99, Academic Press, New York.Google Scholar
  194. Nachmansohn, D., 1969, Proteins of excitable membranes, J. Gen. Physiol. 54: 187.PubMedCrossRefGoogle Scholar
  195. Nastuk, W. L., 1953, Membrane potential changes at a single muscle end-plate produced by transitory application of acetylcholine with an electrically controlled microjet, Fed. Proc. 12: 102.Google Scholar
  196. Nicol, J. A. C., 1952, Muscle activity and drug action in the body wall of the sabellid worm Branchioma vesiculosum (Montagu), Physiol. Comp. Oecol. 2: 339.Google Scholar
  197. Otsuka, M., and Endo, M., 1960, The effect of guanidine on neuromuscular transmission, J. Pharmacol. Exptl. Therap. 128: 273.Google Scholar
  198. Pantin, C. F. A., 1935, Response of the leech to acetylcholine, Nature (Lond.) 135: 875.CrossRefGoogle Scholar
  199. Paton, W. D. M., 1949, The pharmacology of curare and curarizing substances, J. Pharm. Pharmacol. 1: 273.PubMedCrossRefGoogle Scholar
  200. Paton, W. D. M., 1951, The pharmacology of decamethonium, Ann. N.Y. Acad. Sci. 54: 347.CrossRefGoogle Scholar
  201. Paton, W. D. M., and Perry, W. L. M., 1951, The pharmacology of the toxiferines, Brit. J. Pharmacol. 6: 299.PubMedGoogle Scholar
  202. Paton, W. D. M., and Perry, W. L. M., 1953, The relationship between depolarization and block in the cat’s superior cervical ganglion, J. Physiol. (Lond.) 119: 43.Google Scholar
  203. Paton, W. D. M., and Zaimis, E. J., 1948, Curare-like action of polymethylene bis-quaternary ammonium salts, Nature (Lond.) 161: 718.CrossRefGoogle Scholar
  204. Paton, W. D. M., and Zaimis, E. J., 1949, The pharmacological actions of polymethylene bis- trimethylammonium salts, Brit. J. Pharmacol. 4: 381.PubMedGoogle Scholar
  205. Paton, W. D. M., and Zaimis, E. J., 1952, The methonium compounds, Pharmacol. Rev. 4: 219.PubMedGoogle Scholar
  206. Peper, K., and McMahan, U. J., 1972, Distribution of acetylcholine receptors in the vicinity of nerve terminals on skeletal muscle of the frog, Proc. Roy. Soc. Lond. Ser. B. 181: 431.CrossRefGoogle Scholar
  207. Pick, E. P., and Unna, K., 1945, The effect of curare and curare-like substances on the central nervous system, J. Pharmacol. Exptl Therap. 83: 59.Google Scholar
  208. Pitman, R. M., and Kerkut, G. A., 1970, Comparison of the actions of iontophoretically applied acetylcholine and gamma-aminobutyric acid in cockroach central neurons, Comp. Gen. Pharmacol. 1: 221.PubMedCrossRefGoogle Scholar
  209. Porter, C. W., Chiu, T. H., Wieckowski, J., and Barnard, E. A., 1973, Types and locations of cholinergic receptor-like molecules in muscle fibers, Nature New Biology 241: 3.PubMedGoogle Scholar
  210. Riker, W. F., Jr., and Okamoto, M., 1969, Pharmacology of motor nerve terminals, Ann. Rev. Pharmacol. 9: 173.PubMedCrossRefGoogle Scholar
  211. Riker, W. F., Jr., and Wescoe, W. C., 1951, The pharmacology of Flaxedil, with observations on certain analogs, Ann. N.Y. Acad. Sci. 54: 373.PubMedCrossRefGoogle Scholar
  212. Ritchie, J. M., and Armett, C. J., 1963, On the role of acetylcholine in conduction in mammalian nonmyelinated nerve fibres, J. Pharmacol. Exptl. Therap. 139: 201.Google Scholar
  213. Roeder, K. D., 1948, The effect of anticholinesterases and related substances on nervous activity of the cockroach, Bull. Johns Hopkins Hosp. 83: 587.PubMedGoogle Scholar
  214. Roepke, M. H., 1937, A study of choline esterase, J. Pharmacol. Exptl. Therap. 59: 264.Google Scholar
  215. Rushton, W. A. H., 1933, Lapique’s theory of curarization, J. Physiol. (Lond.) 11: 337.Google Scholar
  216. Sauvage, G. L., Berger, F. M., and Boekelheide, V., 1949, The conversion of ß-erythroidine to derivatives of the desmethoxy series and some pharmacological properties of apo-ß- erythroidine, Science 109: 627.PubMedCrossRefGoogle Scholar
  217. Schueler, F. W., 1960, Chemobiodynamics and Drug Design, p. 484, McGraw-Hill, New York.Google Scholar
  218. Shanes, A. M., 1958, Electrochemical aspects of physiological and pharmacological action in excitable cells. Part I. The resting cells and its alteration by extrinsic factors, Pharmacol. Rev. 10: 59.PubMedGoogle Scholar
  219. Shankland, D. L., Rose, J. A., and Donniger, C., 1971, The cholinergic nature of the cercal nerve-giant fiber synapse in the sixth abdominal ganglion of the American cockroach Periplaneta americana L., J. Neurobiol. 2: 247.PubMedCrossRefGoogle Scholar
  220. Smith, S. M., Brown, H. O., Toman, J. E. P., and Goodman, L. S., 1947, The lack of cerebral effects of d-tubocurarine, Anesthesiology 8: 1.PubMedCrossRefGoogle Scholar
  221. Smith, W. K., 1947, The differential action of erythroidine in the normal and in the decerebrate animal, Fed. Proc. 6: 205.Google Scholar
  222. Smith, W. K., Dodge, P., Luttreil, C., and Feldmahn, A., 1949, The site of action of some chemical agents in diminishing normal and excessive muscle tension, Science 110: 96.PubMedCrossRefGoogle Scholar
  223. Sobrino, J. A., and del Castillo, J., 1972, Activation of the cholinergic end-plate receptors by oxidizing reagents, Internat. J. Neurosci. 3: 251.CrossRefGoogle Scholar
  224. Sollman, T., 1957, A Manual of Pharmacology and Its Applications to Therapeutics and Toxicology, Saunders, Philadelphia.Google Scholar
  225. Speight, T. M., and Avery, G. S., 1972, Pancuronium bromide: A review of its pharmacological properties and clinical application, Drugs (Australasian Drug Inform. Serv., Auckland ), 4.Google Scholar
  226. Standaert, F. G., 1964, The action of d-tubocurarine on the motor nerve terminal, J. Pharmacol. Exptl. Therap. 143: 181.Google Scholar
  227. Stovner, J., and Lund, I., 1970, The muscle relaxants and their antagonists, Brit. J. Anesth. 42: 235.CrossRefGoogle Scholar
  228. Suga, N., and Katsuki, Y., 1961, Pharmacological studies on the auditory synapses in a grasshopper, J. Exptl. Biol. 38: 759.Google Scholar
  229. Takeuchi, A., and Takeuchi, N., 1960, On the permeability of end-plate membrane during the action of transmitter, J. Physiol. (Lond.) 154: 52.Google Scholar
  230. Takeuchi, N., 1963, Some properties of conductance changes at the end-plate membrane during the action of acetylcholine, J. Physiol. (Lond.) 167: 128.Google Scholar
  231. Tauc, L., 1967, Transmission in vertebrate and invertebrate ganglia, Physiol. Rev. 47 521.PubMedGoogle Scholar
  232. Tauc, L., and Gerschenfeld, H. M., 1961, Cholinergic transmission mechanisms for both excitation and inhibition in molluscan central synapses, Nature (Lond.) 192: 366.CrossRefGoogle Scholar
  233. Tauc, L., and Gershenfeld, H. M., 1962, A cholinergic mechanism of inhibitory synaptic transmission in a molluscan nervous system, J. Neurophysiol. 25: 236.PubMedGoogle Scholar
  234. Taylor, D. B., and Nedergaard, O. A., 1965, Relation between structure and action of quaternary ammonium neuromuscular blocking agents, Physiol. Rev. 45: 523.PubMedGoogle Scholar
  235. Thesleff, S., 1955, The mode of neuromuscular block caused by acetylcholine, nicotine, decamethonium and succinylcholine, Acta Physiol. Scand. 34: 218.CrossRefGoogle Scholar
  236. Thesleff, S., 1956, A further analysis of the neuromuscular block caused by acetylcholine, Acta Physiol. Scand. 37: 330.PubMedCrossRefGoogle Scholar
  237. Thesleff, S., 1958, A study of the interaction between neuromuscular blocking agents and acetylcholine at the mammalian motor end-plate, Acta Anaesthesiol. Scand. 2: 69.PubMedCrossRefGoogle Scholar
  238. van Maanen, E. F., 1948, A comparison of curare alkaloids, Fed. Proc. 7: 261.Google Scholar
  239. van Maanen, E. F., 1950, The antagonism between acetylcholine and the curare alkaloids, d- tubocurarine, c-curarine-I, c-toxiferine-II and ß-erythroidine in the rectus abdominis of the frog, J. Pharmacol. Exptl. Therap. 99: 255.Google Scholar
  240. Waser, P. G., 1953, Calebassen-Curare, Helv. Physiol. Pharmacol. Acta Suppl. 8: 11.Google Scholar
  241. Waser, P. G., 1962, Relation between enzymes and cholinergic receptors, in: Enzymes and Drug Action, A Ciba Foundation Symposium ( A. V. S. de Reuck, ed.) pp. 206–219, Little, Brown, Boston.Google Scholar
  242. Waser, P. G., 1965, The molecular distribution of 14C-decamethonium in and around the motor end plate and its metabolism in cats and mice, in: Pharmacology of Cholinergic and Adrenergic Transmission, pp. 129–136, Pergamon Press, Oxford.Google Scholar
  243. Waser, P. G., 1966, Autoradiographic investigations of cholinergic and other receptors in the motor endplate, in: Advances in Drug Research ( N. J. Harper and A. B. Simmonds, eds.) pp. 81–120, Academic Press, New York.Google Scholar
  244. Waser, P. G., 1967, Receptor localization by autoradiographic techniques, Ann. N.Y. Acad. Sci. 144: 737.CrossRefGoogle Scholar
  245. Waser, P. G., 1970, On receptors in the postsynaptic membrane of the motor endplate, in: Molecular Properties of Drug Receptors, A Ciba Foundation Symposium ( R. Porter and M. O’Connor, eds.) pp. 59–74, J. & A. Churchill, London.Google Scholar
  246. Wedensky, N. E., 1903, Die Erregung, Hemmung und Narkose, Pflüger’s Arch. Ges. Physiol. 10: 1.Google Scholar
  247. Welsh, J. H., 1948, Concerning the mode of action of acetylcholine, Bull. Johns Hopkins Hosp. 83: 568.PubMedGoogle Scholar
  248. Welsch, J. H., and Taub, R., 1953, The action of acetylcholine antagonists on the heart of Venus mercenaria, Brit. J. Pharmacol. 8: 327.Google Scholar
  249. Werner, G., 1961, Antidromic activity in motor nerves and its relation to a generator event in nerve terminals, J. Neurophysiol. 24: 401.PubMedGoogle Scholar
  250. Willstaetter, R., and W. Heubner, 1907, Über eine neue Solanaceenbase, Ber. Deutsch. Chem. Ges. 40: 3869.CrossRefGoogle Scholar
  251. Wilson, A. T., and Wright, S., 1936, Anti-curare action of potassium and other substances, Quart. J. Exptl. Physiol. 26: 127.Google Scholar
  252. Wintersteiner, O., and Dutcher, J. D., 1943, Curare alkaloids from Chondodendron tomentosum, Science 97: 467.PubMedCrossRefGoogle Scholar
  253. Wright, E. B., 1949, The action of erythroidine, curare and chlorobutanol in the crayfish, J. Cell. Comp. Physiol. 33: 301.CrossRefGoogle Scholar
  254. Wright, S., 1955, Electroencephalographic patterns following intraventricular injection of tu- bocurarine in the cat, J. Physiol. (Lond.) 130: 35 P.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Jose del Castillo
    • 1
    • 2
  • Margaret Anderson
    • 3
  1. 1.Laboratory of NeurobiologyUniversity of Puerto RicoSan Juan, Puerto RicoUSA
  2. 2.Department of PharmacologyUniversity of Puerto RicoSan Juan, Puerto RicoUSA
  3. 3.Department of Biological SciencesSmith CollegeNorthamptonUSA

Personalised recommendations