• Theodore A. Slotkin


Reserpine, an alkaloid obtained from the roots of Rauwolfia serpentina (Fig. 1) and related species, is one of the drugs of antiquity. Primitive doctors have used Rauwolfia to treat a wide variety of diseases (Raymond-Hamet, 1939), and at least two of these actions have found a place in modern therapeutics, namely the antihypertensive and tranquilizing properties. In this respect, it is interesting to note that one of the common ancient names of Rauwolfia translates as “madman’s medicine” (Saxton, 1960). References to the actions of Rauwolfia in the European literature date back to the sixteenth century (Rieppel, 1955), and the genus was named a century later in honor of Leonhard Rauwolf (d. 1596), an Augsburg physician who probably was not even acquainted with the plants (Rieppel, 1955). The first detailed description of the medicinal uses of Rauwolfia appeared in Rumpf’s Herbarii Amboinensis Auctuarium (1755).


Tyrosine Hydroxylase Biogenic Amine Adrenal Medulla Tyrosine Hydroxylase Activity Storage Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abboud, F. M., Eckstein, J. W., Lawrence, M. S., and Hoak, J. C., 1967, Preliminary observations on the use of intra-arterial reserpine in Raynaud’s phenomenon, Circulation (Suppl. 2) 36: 49.Google Scholar
  2. Ahlbaum, H. G., and Milch, L. J., 1962, The effect of central nervous system drugs on the incorporation of radioactive carbon into brain adenosine triphosphate (ATP), Ann. N.Y. Acad. Sci. 96: 190.CrossRefGoogle Scholar
  3. Alpers, H. S., and Shore, P. A., 1969, Specific binding of reserpine—Association with no-repinephrine depletion, Biochem. Pharmacol. 18: 1363.PubMedCrossRefGoogle Scholar
  4. Andén, N.-E., and Lundborg, P., 1970, Recovery of the amine uptake-storage mechanism in nerve granules after reserpine treatment: Inhibition by axotomy, J. Pharm. Pharmacol. 22: 233.PubMedCrossRefGoogle Scholar
  5. Andén, N.-E., Roos, B.-E., and Werdinius, B., 1963, 3,4-Dihydroxyphenylacetic acid in rabbit corpus striatum normally and after reserpine treatment, Life Sci. 2: 319.Google Scholar
  6. Andén, N.-E., Roos, B.-E., and Werdinius, B., 1964, Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum, Life Sci. 3: 149.CrossRefGoogle Scholar
  7. Atack, C., 1971, Reduction of histamine in mouse brain by N1-(DL-seryl)-N2-(2,3,4- trihydroxybenzyl) hydrazine and reserpine, J. Pharm. Pharmacol. 23: 992.PubMedCrossRefGoogle Scholar
  8. Axelrod, J., 1971, Noradrenaline: Fate and Control of its biosynthesis, Science 173: 598PubMedCrossRefGoogle Scholar
  9. Axelrod, J., Hertting, G., and Patrick, R. W., 1961, Inhibition of H3-norepinephrine release by monoamine oxidase inhibitors, J. Pharmacol. Exptl. Therap. 134: 325.Google Scholar
  10. Axelrod, J., Mueller, R. A. and Thoenen, H., 1970, Neuronal and hormonal control of tyrosine hydroxylase and phenylethanolamine N-methyltransferase activity, Bayer- Symposium 11: 212.CrossRefGoogle Scholar
  11. Balzer, H., and Palm, D., 1962, Über den Mechanismus der Wirkung des Reserpins auf den Glykogengehalt der Organe, Naunyn-Schmiedeberg’s Arch. Pharmakol. 243: 65.CrossRefGoogle Scholar
  12. Balzer, H., Holtz, P., and Palm, D., 1961a, Reserpin und γ-Aminobuttersäuregehalt des Gehirns, Experientia 17: 38.PubMedCrossRefGoogle Scholar
  13. Balzer, H., Holtz, P., and Palm, D., 1961 b, Reserpin und Glykogengehalt der Organe, Experientia 17: 304.Google Scholar
  14. Balzer, H., Makinose, M., and Hasselbach, W., 1968a, The inhibition of the sarcoplasmic calcium pump by prenylamine, reserpine, chlorpromazine and imipramine, Naunyn-Schmiedeberg’s Arch. Pharmakol. 260: 444.CrossRefGoogle Scholar
  15. Balzer, H., Makinose, M., Fiehn, W., and Hasselbach, W., 1968b, The binding of the calcium transport inhibitors reserpine, chloropromazine and prenylamine to the lipids of the membranes of the sarcoplasmic reticulum, Naunyn-Schmiedeberg’s Arch. Pharmakol. 260: 456.CrossRefGoogle Scholar
  16. Barchas, J. D., Ciaranello, R. D., Stolk, J. M., Brodie, H. K. H., and Hamburg, D. A., 1972, Biogenic amines and behavior, in Hormones and Behavior ( S. Levine, ed.) pp. 235–329, Academic Press, New York.Google Scholar
  17. Bein, H. J., 1956, The pharmacology of Rauwolfia, Pharmacol. Rev. 8: 435.Google Scholar
  18. Belford, J., and Feinleib, M. R., 1961, Phosphorylase activity in heart and brain after reserpine, iproniazid and other drugs affecting the central nervous system, Biochem. Pharmacol. 6: 189.CrossRefGoogle Scholar
  19. Berkowitz, B. A., Tarver, J. H., and Spector, S., 1971, Norepinephrine in blood vessels: Concentration, binding, uptake and depletion, J. Pharmacol. Exptl. Therap. 177: 119.Google Scholar
  20. Berl, S., and Frigyesi, T. L., 1969, Effect of reserpine on the turnover of glutamate, glutamine, aspartate and GABA labeled with [1-14C] acetate in caudate nucleus, thalamus and sensorimotor cortex (cat), Brain Res. 14: 683.PubMedCrossRefGoogle Scholar
  21. Berneis, K. H., Pletscher, A., and DaPrada, M., 1969, Metal-dependent aggregation of biogenic amines: A hypothesis for their storage and release, Nature (Lond.) 224: 281.CrossRefGoogle Scholar
  22. Berneis, K. H., Pletscher, A., DaPrada, M., 1970, Phase separation in solutions of noradrenaline and adenosine triphosphate: Influence of bivalent cations and drugs, Brit. J. Pharmacol. 39: 382.CrossRefGoogle Scholar
  23. Bertler, Å., 1961, Effect of reserpine on the storage of catecholamines in brain and other tissues, Acta. Physiol. Scand. 51: 75.CrossRefGoogle Scholar
  24. Bertler, Å., Carlsson, A., and Rosengren, E., 1956, Release by reserpine of catecholamines from rabbits’ hearts, Naturwissenschaften 22: 521.CrossRefGoogle Scholar
  25. Bertler, Å., Hillarp, N.-Å., and Rosengren, E., 1961, Effect of reserpine on the storage of new-formed catecholamines in the adrenal medulla, Acta Physiol. Scand. 52: 44.CrossRefGoogle Scholar
  26. Bhagat, B., Burke, W. J., and Davis, J. W., 1971, Effect of reserpine on the activity of adrenal enzymes involved in the synthesis of adrenaline, Brit. J. Pharmacol. 43: 819.CrossRefGoogle Scholar
  27. Bhatia, B. B., 1942, On use of Rauwolfia serpentina in high blood pressure, J. Indian Med. Ass. 11: 262.Google Scholar
  28. Bianchi, C., and Beani, L., 1966, Reserpine and the neuro-muscular junction, J. Pharm. Pharmacol. 18: 757.PubMedCrossRefGoogle Scholar
  29. Blair, J. H., and Simpson, G. M. 1966, Effect of anti-psychotic drugs on reproductive functions, Dis. Nerv. Syst. 27: 645.PubMedGoogle Scholar
  30. Blaschko, H., and Chrüsciel, T. L., 1960, The decarboxylation of amino acids related to tyrosine and their awakening action in mice, J. Physiol. (Lond.) 151: 272.Google Scholar
  31. Blum, J. J., 1967, An adrenergic control system in Tetrahymena, Proc. Natl. Acad. Sci. 58: 81.PubMedCrossRefGoogle Scholar
  32. Blum, J. J., Kirshner, N., and Utley, J. 1966, The effect of reserpine on growth and catecholamine content of Tetrahymena, Mol. Pharmacol. 2: 606.Google Scholar
  33. Boadle-Biber, M. C., and Roth, R. H., 1972, Effect of drugs on the synthesis of noradrenaline in guinea-pig vas deferens, Brit. J. Pharmacol. 46: 696.CrossRefGoogle Scholar
  34. Bogdanksi, D. F., Sulser, F., and Brodie, B. B., 1961, Comparative action of reserpine, tetrabenazine and chlorpromazine on central parasympathetic activity: Effects on pupillary size and lacrimation in rabbit and salivation in dogs, J. Pharmacol. Exptl. Therap. 132: 176.Google Scholar
  35. Brodie, B. B., 1964, Physico-chemical factors in drug absorption, in Absorption and Distribution of Drugs ( T. B. Binns, ed.) pp. 16–48, Williams and Wilkins, Baltimore.Google Scholar
  36. Brodie, B. Bf, Pletscher, A., and Shore, P. A., 1956, Possible role of serotonin in brain function, J. Pharmacol. Exptl. Therap. 116: 9.Google Scholar
  37. Burack, W. R., Weiner, N., and Hagen, P. B., 1960, The effect of reserpine on the catecholamine and adenine nucleotide contents of adrenal gland, J. Pharmacol. Exptl. Therap. 130: 245.Google Scholar
  38. Burack, W. R., Drasköczy, P. R., and Weiner, N., 1961, Adenine nucleotide, catecholamine and protein contents of whole adrenal glands and heavy granules of reserpine-treated fowl, J. Pharmacol. Exptl. Therap. 133: 25.Google Scholar
  39. Burn, J. H., and Rand, M. J., 1958, The action of sympathomimetic amines in animals treated with reserpine, J. Physiol. (Lond.) 144: 314.Google Scholar
  40. Burn, J. H., and Rand, M. J., 1960, The effect of precursors of noradrenaline on the response to tyramine and sympathetic stimulation, Brit. J. Pharmacol. 15: 47.PubMedGoogle Scholar
  41. Burn, J. H., and Rand, M. J., 1962, A new interpretation of the adrenergic nerve fiber, Advan. Pharmacol. 1: 2.Google Scholar
  42. Callingham, B. A., and Cass, R., 1962, The effects of bretylium and cocaine on noradrenaline depletion, J. Pharm. Pharmacol. 14: 385.PubMedCrossRefGoogle Scholar
  43. Carlsson, A., 1965, Drugs which block the storage of 5-hydroxytryptamine and related amines, Handbook Exptl. Pharmacol. 19: 529.Google Scholar
  44. Carlsson, A., and Hillarp, N.-Å., 1956, Release of adrenaline from the adrenal medulla of rabbits produced by reserpine, Kgl. Fysiogr. Sailsk. Lund. Förh 26: No. 8.Google Scholar
  45. Carlsson, A., and Waldeck, B., 1968, Different mechanisms of drug-induced release of noradrenaline and its congeners α-methyl-noradrenaline and metaraminol, Europ. J. Pharmacol. 4: 165.CrossRefGoogle Scholar
  46. Carlsson, A., Rosengren, E., Bertler, A., and Nilsson, J., 1957α, Effect of reserpine on the metabolism of catecholamines, in: Psychotropic Drugs (S. Garattini and V. Ghetti, eds.) pp. 363–372, Elsevier, Amsterdam.Google Scholar
  47. Carlsson, A., Lindqvist, M., and Magnusson, T., 1957b, 3,4-Dihydroxyphenylalanine gand 5-hydroxytryptophan as reserpine antagonists, Nature (Lond.) 180: 1200.Google Scholar
  48. Carlsson, A., Hillarp, N.-Å., and Waldeck, B., 1962, A Mg++-ATP-dependent storage mechanism in the amine granules of the adrenal medulla, Med. Exptl. (Basel) 6: 47.CrossRefGoogle Scholar
  49. Carlsson, A., Hillarp, N.-Å., and Waldeck, B., 1963, Analysis of the Mg++-ATP dependent storage mechanism in the amine granules of the adrenal medulla, Acta Physiol. Scand. 59: 1 (Suppl. 215).Google Scholar
  50. Carlsson, A., Lundborg, P., Stitzel, R., and Waldeck, B., 1967, Uptake storage and release of 3H-α-methylnorepinephrine, J. Pharmacol. Exptl. Therap. 158: 175.Google Scholar
  51. Carrier, O., Jr., and Jurevics, H. A., 1973, The role of calcium in “nonspecific” supersensitivity of vascular muscle, J. Pharmacol. Exptl. Therap. 184: 81.Google Scholar
  52. Choi, S. J., and Roberts, J., 1970, Effect of reserpine on 22Na and 42K exchange in the cat papillary muscle, Proc. Soc. Exptl. Biol. Med. 135: 579.Google Scholar
  53. Chubb, I. W., DePotter, W. P., and De Schaepdryver, A. F., 1972, Influence of reserpine on noradrenaline and dopamine β-hydroxylase in the splenic nerve, Arch. Int. Pharmacodyn. Therap. 196: Suppl. 296.Google Scholar
  54. Clower, B. R., Williams, W. L., and Matheny, J. L., 1969, Effects of reserpine on calcium levels in cardiac tissue of mice. Cardiovasc. Res. 3: 64.PubMedCrossRefGoogle Scholar
  55. Coupland, R. E., 1958, Strain sensitivity of albino rats to reserpine, Nature (Lond) 181: 930.CrossRefGoogle Scholar
  56. DeFelice, F. A., 1957, Plasma disappearance and urinary excretion of reserpine (Serpasil) in the unanesthesized dog, Experientia 13: 373.CrossRefGoogle Scholar
  57. Degkwitz, R., Frowein, R., Kulenkampff, C., and Mohs, U., 1960, Über die Wirkungen des L-dopa beim Menschen und deren Beeinflussung durch Reserpin, Chlorpromazin, Iproniazid und Vitamin B1, Klin. Wschr. 38: 120.PubMedCrossRefGoogle Scholar
  58. De Schaepdryver, A. F., Bogaert, M., Delannois, A. L., Bernard, A. L., and Bernard, P., 1963, Peripheral noradrenergic reactivity, Arch. Int. Pharmacodyn. Therap. 142: 243.Google Scholar
  59. Dhar, M. M., Kohli, J. D., and Srivastava, S. K., 1955, Studies on the metabolism of reserpine. I. Identification of metabolites, J. Sci. Ind. Res. 14C: 179.Google Scholar
  60. Dismukes, R. K., and Rake, A. V. 1972, Involvement of biogenic amines in memory formation, Psychopharmacologia 23: 17.PubMedCrossRefGoogle Scholar
  61. Domenjoz, R., and Theobald, W., 1959, Zur Pharmakologie des Tofranil (N-(3-Dimethyl- aminopropyl)-iminodibenzylhydrochlorid), Arch. Int. Pharmacodyn. Therap. 120: 450.Google Scholar
  62. Emås, S., 1968, Mechanisms of action of reserpine on gastric secretion of acid, Am. J. Digest. Dis. 13: 572.PubMedCrossRefGoogle Scholar
  63. Emås, S., and Fyrö, B., 1967, Gastric and duodenal ulcers in cats following reserpine, Acta Physiol. Scand. 71: 316.Google Scholar
  64. Enna, S. J., and Shore, P. A., 1971, Regional distribution of persistently bound reserpine in rat brain, Biochem. Pharmacol. 20: 2910.PubMedCrossRefGoogle Scholar
  65. Erickson, L. B., 1969, The comparative effect of reserpine and carbethoxysyringoyl methylreserpate (Su 3118) upon the menstrual cycle of the rhesus monkey, Can. J. Physiol. Pharmacol. 47: 99.CrossRefGoogle Scholar
  66. Everett, G. M., and Toman, J. E. P., 1959, Mode of action of Rauwolfia alkaloids on motor activity, Biol. Psychiat. 2: 75.Google Scholar
  67. Falck, B., Hillarp, N.-A., and Högberg, B., 1956, Content and intracellular distribution of adenosine triphosphate in cow adrenal medulla, Acta Physiol. Scand. 36: 360.PubMedCrossRefGoogle Scholar
  68. Farnebo, L.-P., 1971, Effect of reserpine on release of [3H] noradrenaline, [3H] dopamine and [3H] metaraminol from field stimulated rat iris, Biochem. Pharmacol. 20: 2715.PubMedCrossRefGoogle Scholar
  69. Fawaz, G., 1963, Cardiovascular pharmacology, Ann. Rev. Pharmacol. 3: 57.CrossRefGoogle Scholar
  70. Ferris, R. M., Viveros, O. H., and Kirshner, N., 1970, Effects of various agents on the Mg2+ — ATP stimulated incorporation and release of catecholamines by isolated bovine adrenomedullary storage vesicles and on secretion from the adrenal medulla, Biochem. Pharmacol. 19: 505.PubMedCrossRefGoogle Scholar
  71. Gabe, M., Tuchmann-Duplessis, H., and Mercier-Parot, L., 1961, Influence de la réserpine sur la neurosecretion hypothalamo-hypophysaire du rat albinos, Compt. Rend. Acad. Sci. (Paris) 252: 1857.Google Scholar
  72. Gaffney, T. E., Chidsey, C. A., and Braunwald, E., 1963, Study of the relationship between the neurotransmitter store and adrenergic nerve block induced by reserpine and guanethidine, Circ. Res. 12: 264.PubMedCrossRefGoogle Scholar
  73. Galansino, G., Litta-Modignani, R., Berlinger, F., Billinger, D., and Foá, P. P., 1963, Studies on the release of serotonin and catecholamines in the pancreatoduodenal area, Proc. Soc. Exptl. Biol. Med. 112: 542.Google Scholar
  74. Gandini, A., Lualdi, P., and Delia Bella, D., 1972, Influence of reserpine on the release and effects of prostaglandins, Arch. Int. Pharmacodyn. Therap. 196: Suppl. 179.Google Scholar
  75. Garattini, S., and Valzelli, L., 1962, Biochemistry and pharmacology of serotonin in the central nervous system, in: Monoamines et Système Nerveux Central ( J. de Ajuriaguerra, ed.) pp. 59–88, George and Company, Geneva.Google Scholar
  76. Gaunt, R., Renzi, A. A., Antonchak, N., Miller, G. J., and Gilman, M., 1954, Endocrine aspects of the pharmacology of reserpine, Ann. N.Y. Acad. Sci. 59: 22.PubMedCrossRefGoogle Scholar
  77. Gaunt, R., Chart, J. J., and Renzi, A. A., 1963, Interactions of drugs with endocrines, Ann. Rev. Pharmacol. 3: 109.CrossRefGoogle Scholar
  78. Giachetti, A. and Shore, P. A., 1970, Permeability changes induced in the adrenergic neurone by reserpine, Biochem. Pharmacol. 19: 1621.PubMedCrossRefGoogle Scholar
  79. Gilgen, A., Maickel, R. P., Nikodijevic, O., and Brodie, B. B., 1962, Essential role of catecholamines in the mobilization of free fatty acids and glucose after exposure to cold, Life Sci. 12: 709.CrossRefGoogle Scholar
  80. Gillespie, E., and Levine, R. J. 1969, Histamine release by reserpine from rat peritoneal mast cells in vitro, Biochem. Pharmacol. 18: 934.PubMedCrossRefGoogle Scholar
  81. Glazko, A. J., Dill, W. A., Wolf, L. M., and Kazenko, A., 1956, Studies on the metabolism of reserpine. J. Pharmacol. Exptl. Therap. 118: 377.Google Scholar
  82. Glowinski, J., Iversen, L. L., and Axelrod, J., 1966, Storage and synthesis of norepinephrine in the reserpine-treated rat brain, J. Pharmacol. Exptl. Therap. 151: 385.Google Scholar
  83. Goodman, L. S., and Gilman, A., 1970, The Pharmacological Basis of Therapeutics, 4th ed., Macmillan, New York.Google Scholar
  84. Gray, W. D., Rauh, C. E., and Shanahan, R. W., 1963, The mechanism of the antagonistic action of reserpine on the anticonvulsant effect of inhibitors of carbonic anhydrase, J. Pharmacol. Exptl. Therap. 139: 350.Google Scholar
  85. Green, H. O., and Slotkin, T. A., 1973, Reserpine-like effects of harmine on isolated adrenal medullary vesicles, Mol. Pharmacol. 9: 748.PubMedGoogle Scholar
  86. Gripenberg, J., Jansson, S.-E., and Partanen, T., 1972, Incorporation of reserpine into isolated rat peritoneal mast cells and mast cell granules in vitro, Acta Physiol. Scand. 86: 433.PubMedGoogle Scholar
  87. Häggendal, J., and Dahlström, A., 1971, The functional role of the amine storage granules of the sympathoadrenal system, in: Subcellular Organization and Function in Endocrine Tissues ( H. Heller and K. Lederis, eds.) pp. 651–669, Cambridge University Press, Cambridge.Google Scholar
  88. Häkonson, R., Lindstrand, K., Nordgren, L., and Owman, C., 1971, Reserpine-induced mobilization of histamine and vitamin B12-binding proteins from a special type of endocrine cells in rat stomach, Biochem. Pharmacol. 20: 1259.CrossRefGoogle Scholar
  89. Hamberger, B., Malmfors, T., Norberg, K.-A., and Sachs, C., 1964, Uptake and accumulation of catecholamines in peripheral adrenergic neurons of reserpinized animals, studied with a histochemical method, Biochem. Pharmacol. 13: 841.PubMedCrossRefGoogle Scholar
  90. Hanig, R. C., and Aprison, M. H., 1971, The effect of 5-hydroxytryptophan and reserpine administration on the level of sodium, potassium, calcium, magnesium and chloride in five discrete areas of the rabbit brain, Life Sci. 10: 279.CrossRefGoogle Scholar
  91. Hertting, G., Axelrod, J., and Whitby, L. G., 1961, Effect of drugs on the uptake and metabolism of H3-norepinephrine, Pharmacol. Exptl. Therap. 134: 146.Google Scholar
  92. Hess, S. M., Shore, P. A., and Brodie, B. B., 1956, Persistence of reserpine action after the disappearance of drug from brain: Effect on serotonin, J. Pharmacol. Exptl. Therap. 118: 84.Google Scholar
  93. Hillarp, N.-Å., 1958, Adenosinephosphates and inorganic phosphate in the adrenaline and noradrenaline containing granules of the adrenal medulla, Acta Physiol. Scand. 42: 321.PubMedCrossRefGoogle Scholar
  94. Hillarp, N.-Å., 1959, Further observations on the state of the catecholamines stored in the adrenal medullary granules, Acta Physiol. Scand. 47: 271.PubMedCrossRefGoogle Scholar
  95. Hillarp, N.-Å., 1960a, Different pools of catecholamines stored in the adrenal medulla, Acta Physiol. Scand. 50: 8.PubMedCrossRefGoogle Scholar
  96. Hillarp, N.-Å., 19606, Effect of reserpine on the adrenal medulla of sheep, Acta Physiol. Scand. 49: 376.Google Scholar
  97. Hillarp, N.-Å., and Malmfors, T., 1964, Reserpine and cocaine blocking of uptake and storage mechanisms in adrenergic nerves, Life Sci. 3: 703.PubMedCrossRefGoogle Scholar
  98. Hoffer, A., and Osmond, H., 1967, The Hallucinogens, Chap. IIA, pp. 83–236. Academic Press, New York.Google Scholar
  99. Holedek, V., Schreiber, V., and Kmentová, V., 1957, The influence of serpasil on the secretion of antidiuretic hormone, Cas. L’ek. Ces. 96: 1060.Google Scholar
  100. Holtz, P., and Palm, D., 1966, Brenzkatechinamine und andere sympaticomimetische Amine. Biosynthese und Inaktivierung. Frfcisetzung und Wirkung, in: Ergebnisse der Physiologie: Biologischen Chemie und experimentellen Pharmakologie, Vol. 58, Springer, Berlin.Google Scholar
  101. Honda, F., and Imamura, H., 1968, Inhibition of cyclic 3’,5’-nucleotide phosphodiesterase by phenothiazine and reserpine derivatives, Biochim. Biophys. Acta 161: 267.PubMedCrossRefGoogle Scholar
  102. Hussar, A. E., and Bruno, E., 1956, Acute duodenal ulcer associated with reserpine therapy, Gastroenterology 31: 500.PubMedGoogle Scholar
  103. Isaac, L., Cho, A. K., and Beaven, M. A., 1971, Decline of histidine decarboxylase activity and histamine levels in rat stomach after reserpine. Biochem. Pharmacol. 20: 1453.CrossRefGoogle Scholar
  104. Iversen, L. L., Glowinski, J., and Axelrod, J., 1965, The uptake and storage of H3-no-repinephrine in the reserpine-pretreated rat heart, J. Pharmacol. Exptl. Therap. 150: 173.Google Scholar
  105. Iwayama, T., Fleming, W. W., and Burnstock, G., 1973, Ultrastructure of mitochondria in atrial muscle associated with depression and supersensitivity produced by reserpine, J. Pharmacol. Exptl. Therap. 184: 95.Google Scholar
  106. Izquierdo, J. A., Coussio, J. D., and Kaumann, A. J., 1962, Effect of imipramine on the pressor responses to the afferent vagal stimulation of reserpinized dogs, Arch. Int. Pharmacodyn. Therap. 135: 303.Google Scholar
  107. Izumi, F., Oka, M., Yoshida, H., and Imaizumi, R., 1969, Stimulatory effect of reserpine on monoamine oxidase in guinea pig heart, Biochem. Pharmacol. 18: 1739.PubMedCrossRefGoogle Scholar
  108. Jansson, S.-E., 1970, Uptake of 5-hydroxytryptamine by mast cell granules in vitro, Acta Physiol. Scand. 79: 484.CrossRefGoogle Scholar
  109. Johnson, G. E., and Sellers, E. A., 1961, The effect of reserpine on the metabolic rate of rats, Can. J. Biochem. 39: 279.PubMedCrossRefGoogle Scholar
  110. Jonasson, J., Rosengren, E., and Waldeck, B., 1964, Effects of some pharmacologically active amines on the uptake of arylalkylamines by adrenal medullary granules, Acta Physiol. Scand. 60: 136.PubMedCrossRefGoogle Scholar
  111. Jonsson, G., and Sachs, C., 1970, Synthesis of noradrenaline from 3,4-dihydroxyphenylalanine (DOPA) and dopamine in adrenergic nerves of mouse atrium—Effect of reserpine, monoamine oxidase and tyrosine hydroxylase inhibition, Acta Physiol. Scand. 80: 307.PubMedCrossRefGoogle Scholar
  112. Kaul, C. L., and Lewis, J. J., 1963, The effects of reserpine and some related compounds upon the levels of adenine nucleotides, creatine phosphate and inorganic phosphate in the rat brain in vivo, J. Pharmacol. Exptl. Therap. 140: 111.Google Scholar
  113. Keswani, A., D’lorio, A., and Mavrides, C., 1971, The fate of catecholamine-containing granules after depletion of the guinea-pig adrenal glands, Arch. Int. Pharmacodyn. Therap. 193: 171.Google Scholar
  114. Khan, M. Y., and Bernstorf, E. C., 1964, Effect of chlorpromazine and reserpine upon pituitary function, Exptl. Med. Surg. 22: 363.Google Scholar
  115. Khazan, N., Adir, J., Pfeifer, Y., and Sulman, F. G., 1962, Mechanism of antidiuretic action of reserpine, Proc. Soc. Exptl. Biol. Med. 109: 32.Google Scholar
  116. Kim, K. S., and Shore, P. A., 1963, Mechanism of action of reserpine and insulin on gastric amines and gastric acid secretion, and the effect of monoamine oxidase inhibition, J. Pharmacol. Exptl. Therap. 141: 321.Google Scholar
  117. Kirpekar, S. M., and Lewis, J. J., 1959, Some effects of reserpine and hydralazine upon tissue respiration and the concentration of adenosine nucleotides in certain tissues, Brit. J. Pharmacol. 14: 40.PubMedGoogle Scholar
  118. Kirpekar, S. M., Goodlad, G. A. J., and Lewis, J. J., 1958, Reserpine depletion of adenosine triphosphate from the rat suprarenal medulla, Biochem. Pharmacol. 1: 232.CrossRefGoogle Scholar
  119. Kirpekar, S. M., Cerroni, P., and Couri, D., 1963, Depletion and recovery of catecholamines and adenosine-triphosphate of rat adrenal medulla after reserpine treatment, J. Pharmacol. Exptl. Therap. 142: 71.Google Scholar
  120. Kirshner, N., 1962, Uptake of catecholamines by a particulate fraction of the adrenal medulla, J. Biol. Chem. 237: 2311.PubMedGoogle Scholar
  121. Kirshner, N., 1965, The role of the membrane of chromaffin granules isolated from the adrenal medulla, in: Pharmacology of Cholinergic and Adrenergic Transmission ( G. B. Koelle, W. W. Douglas, and A. Carlsson, eds.) pp. 225–233, Czechoslovak Medical Press, Prague.Google Scholar
  122. Kirshner, N., and Viveros, O. H., 1972, The secretory cycle in the adrenal medulla, Pharmacol. Rev. 24: 385.PubMedGoogle Scholar
  123. Kirshner, N., Holloway, C., Smith, W. J., and Kirshner, A. G., 1966, Uptake and storage of catecholamines, in: Mechanisms of Release of Biogenic Amines ( U.S. von Euler, S. Rosell, and B. Uvnäs, eds.) pp. 109–123, Pergamon Press, New York.Google Scholar
  124. Kirshner, N., Schanberg, S. M., and Ferris, R. M., 1971, Molecular aspects of the storage and uptake of catecholamines, Advan. Drug Res. 6: 121.Google Scholar
  125. Kitay, J. I., Holub, D. A., and Jailer, J. W., 1959, “Inhibition” of pituitary ACTH release after administration of reserpine or epinephrine, Endocrinology 65:548.Google Scholar
  126. Klein, R. L., and Lagercrantz, H., 1971, Unidirectional fluxes in isolated splenic nerve vesicles measured by a millipore filter technique: Effects of noradrenaline and competitive reversal of reserpine inhibition, Acta Physiol. Scand. 83: 179.PubMedCrossRefGoogle Scholar
  127. Kontos, H. A., and Wasserman, A. J., 1969, Effect of reserpine in Raynaud’s phenomenon, Circulation 39: 259.PubMedCrossRefGoogle Scholar
  128. Kopin, I. J., 1968, Biosynthesis and metabolism of catecholamines, Anesthesiology 29: 654.PubMedCrossRefGoogle Scholar
  129. Kopin, I. J., and Gordon, E. K., 1963, Metabolism of administered and drug-released norepinephrine-7-H3 in the rat, J. Pharmacol. Exptl. Therap. 140: 207.Google Scholar
  130. Lagercrantz, H., 1971, Isolation and characterization of sympathetic nerve trunk vesicles, Acta Physiol. Scand., Suppl. 366.Google Scholar
  131. Lessin, A. W., and Parkes, M. W., 1957, The relation between sedation and body temperature in the mouse, Brit. J. Pharmacol. 12: 245.PubMedGoogle Scholar
  132. Lessin, A. W., and Parkes, M. W., 1959, The effects of reserpine and other agents upon leptazol convulsions in mice, Brit. J. Pharmacol. 14: 108.PubMedGoogle Scholar
  133. Lewis, J. J., 1963, Rauwolfia derivatives, in: Physiological Pharmacology: A Comprehensive Treatise, Vol. I: The Nervous System ( W. S. Root and F. G. Hofmann, eds.) pp. 479–536, Academic Press, New York.Google Scholar
  134. Lindmar, R., and Muscholl, E., 1965, Die Aufnahme von α-Methylnoradrenalin in das isolierte Kaninchenherz und seine Freisetzung durch Reserpin und Guanethidin in vivo, Naunyn-Schmiedeberg’s Arch. Pharmakol. 249: 529.CrossRefGoogle Scholar
  135. Lishajko, F., 1969, Release, reuptake and net uptake of dopamine, noradrenaline and adrenaline in isolated sheep adrenal medullary granules, Acta Physiol. Scand. 76: 159.PubMedCrossRefGoogle Scholar
  136. Lishajko, F., 1971, Studies on catecholamine release and uptake in adrenomedullary storage granules, Acta Physiol. Scand., Suppl. 362.Google Scholar
  137. Loggie, J. M. H., Saito, H., Kahn, I., Fenner, A., and Gaffney, T. E., 1967, Accidental reserpine poisoning: Clinical and metabolic effects, Clin. Pharmacol. Therap. 8: 692.Google Scholar
  138. Lucas, R. A., 1963, The chemistry and pharmacology of the Rauwolfia alkaloids, Prog. Med. Chem. 3: 146.CrossRefGoogle Scholar
  139. Lundborg, P., 1966, Uptake of metaraminol by the adrenal medullary granules, Acta Physiol. Scand. 67: 423.PubMedCrossRefGoogle Scholar
  140. Lundborg, P., and Stitzel, R., 1967a, Uptake of biogenic amines by two different mechanisms present in adrenergic granules, Brit. J. Pharmacol. 29: 342.PubMedGoogle Scholar
  141. Lundborg, P., and Stitzel, R., 1961 b, Effect of reserpine and protriptyline on the subcellular distribution of 3H-metaraminol in the mouse heart, Brit. J. Pharmacol. 30: 379.Google Scholar
  142. Lundborg, P., and Waldeck, B., 1971, On the mechanism of amphetamine induced release of reserpine-resistant 3H-noradrenaline and 3H-α-methylnoradrenaline, Acta Pharmacol. Toxicol. 30: 339.CrossRefGoogle Scholar
  143. Maass, A. R., Jenkins, B., Shen, Y., and Tannenbaum, P., 1969, Studies on absorption, excretion and metabolism of 3H-reserpine in man, Clin. Pharmacol. Therap. 10: 366.Google Scholar
  144. MacLean, P. D., 1955, Hippocampal studies: Their possible bearing on neuropsychiatry, Arch. Neurol. Psychiat. (Chicago) 74: 219.Google Scholar
  145. MacLeod, R. M., 1969, Influence of norepinephrine and catecholamine-depleting agents on the synthesis and release of prolactin and growth hormone, Endocrinology 85: 916.PubMedCrossRefGoogle Scholar
  146. MacPhillamy, H. B., Huebner, C. F., Schüttler, E., St. André, A. F., and Ulshafer, P. R., 1955, Rauwolfia alkaloids. XIX. The constitution of deserpidine and reserpine, J. Am. Chem. Soc. 77: 4335.CrossRefGoogle Scholar
  147. Maggiolo, C., and Haley, T. J., 1964, Brain concentration of reserpine-H3 and its metabolites in the mouse, Proc. Soc. Exptl. Biol. Med. 115: 149.Google Scholar
  148. Maickel, R. P., Westermann, E. O., and Brodie, B. B., 1962, Effects of reserpine and cold-exposure on pituitary adrenocortical function in rats, J. Pharmacol. Exptl. Therap. 134: 167.Google Scholar
  149. Malhotra, C. L., and Das, P. K., 1962, Effect of reserpine on the acetylcholine content of the heart, the ileum and the hypothalamus of the dog, Brit. J. Pharmacol. 18: 190.PubMedGoogle Scholar
  150. Malhotra, C. L., and Pundlik, P. G., 1959, The effect of reserpine on the acetylcholine content of different areas of the nervous system of the dog, Brit. J. Pharmacol. 14: 46.PubMedGoogle Scholar
  151. Malpica, J. F., Jurupe, H., and Campos, H. A., 1970, Actions of reserpine and tyramine on the acetylcholine content of brain stem, heart and blood of the rat, Arch. Int. Pharmacodyn. Therap. 185: 13.Google Scholar
  152. Manara, L., and Garattini, S., 1967, Time course of 3H-reserpine levels in brains of normal and tetrabenazine-pretreated rats, Europ. J. Pharmacol. 2: 139.CrossRefGoogle Scholar
  153. Manara, L., Carminati, P., and Mennini, T., 1972, In vivo persistent binding of 3H-reserpine to rat brain subcellular components, Europ. J. Pharmacol. 20: 109.CrossRefGoogle Scholar
  154. Mathé, V., Kassay, G., and Hunkär, K., 1961, Die Wirkung des Reserpins auf den Gehalt des Rattengehirns an gesamtreduzierenden Stoffen und Glykogen, Z. Ges. Exptl. Med. 134: 249.CrossRefGoogle Scholar
  155. McNeill, J. H., 1969, Reserpine supersensitivity to catecholamine-induced cardiac Phosphorylase activation, Can. J. Physiol. Pharmacol. 47: 515.PubMedCrossRefGoogle Scholar
  156. Miline, R., Stern, P., Serstnev, E., and Muhibic, M., 1957, Effet de la réserpine et de la réserpine associée au luminal sur le complexe hypothalamohypophysaire, in: Psychotropic Drugs ( S. Garattini and V. Ghetti, eds.) pp. 332–349, Elsevier, Amsterdam.Google Scholar
  157. Müller, E. E., Sawano, S., Arimura, A., and Schally, A. V., 1967a, Blockade of release of growth hormone by brain norepinephrine depletors, Endocrinology 80: 471.PubMedCrossRefGoogle Scholar
  158. Müller, E. E., Saito, T., Arimura, A., and Schally, A. V., 1967b, Hypoglycemia, stress and growth hormone release: Blockade of growth hormone release by drugs acting on the central nervous system, Endocrinology 80: 109.Google Scholar
  159. Müller, J. M., Schüttler, E., and Bein, H. J., 1952, Reserpin, der sedative Wirkstoff aus Rauwolfia serpentina Benth., Experientia 8: 338.PubMedCrossRefGoogle Scholar
  160. Muscholl, E., 1960, Die Hemmung der Noradrenalin-Aufnahme des Herzens durch Reserpin und die Wirkung von Tyramin, Naunyn-Schmiedeberg’s Arch. Pharmakol. 240: 234.Google Scholar
  161. Muscholl, E., 1972, Adrenergic false transmitters, Handbook Exptl. Pharmacol. 33: 618.Google Scholar
  162. Muscholl, E., and Sprenger, E., 1966, Vergleichende Untersuchung der Blutdruckwirkung, Aufnahme und Speicherung von Dihydroxyephedrin (α-Methyladrenalin) und Dihydroxypseudoephedrin, Naunyn-Schmiedeberg’s Arch. Pharmakol. 254: 109.CrossRefGoogle Scholar
  163. Muscholl, E., and Vogt, M., 1958, The action of reserpine on the peripheral sympathetic system, J. Physiol. (Lond.) 141: 132.Google Scholar
  164. Nasmyth, P. A., 1962, An investigation of the action of tyramine and its interrelationship with the effects of other sympathomimetic amines, Brit. J. Pharmacol. 18: 65.PubMedGoogle Scholar
  165. Negro-Vilar, A., Dickerman, E., and Meites, J., 1968, Removal of plasma FSH-RF activity in hypophysectomized rats by testosterone propionate or reserpine, Endocrinology 83: 1349.PubMedCrossRefGoogle Scholar
  166. Norn, S., and Shore, P. A., 1971α, Further studies on the nature of persistent reserpine binding: Evidence for reversible and irreversible binding, Biochem. Pharmacol. 20: 1291.Google Scholar
  167. Norn, S., and Shore, P. A., 19716, Failure to affect tissue reserpine concentrations by alteration of adrenergic nerve activity, Biochem. Pharmacol. 20: 2133.Google Scholar
  168. Numerof, P., Gordon, M., and Kelly, J. M., 1955, The metabolism of reserpine. I. Studies in the mouse with C14-labeled reserpine, J. Pharmacol. Exptl. Therap. 115: 427.Google Scholar
  169. Numerof, P., Virgona, A. J., Cranswick, E. H., Cunningham, T., and Kline, N. S., 1958, The metabolism of reserpine. II. Studies in schizophrenic patients, Psychiat. Res. Rep. 9: 139.Google Scholar
  170. Oka, M., Ohuchi, T., Yosida, H., and Imaizumi, R., 1966, Selective release of noradrenaline and adrenaline from isolated adrenal medullary granules, Life Sci. 5: 433.PubMedCrossRefGoogle Scholar
  171. Parks, V. J., Sandison, A. G., Skinner, S. L., and Whelan, R. F., 1961, The mechanism of the vasodilator action of reserpine in man, Clin. Sci. 20: 289.PubMedGoogle Scholar
  172. Patrick, R. L., and Kirshner, N., 1971, Acetylcholine-induced stimulation of catecholamine recovery in denervated rat adrenals after reserpine-induced depletion, Mol. Pharmacol. 7: 389.PubMedGoogle Scholar
  173. Pepinsky, R., Turley, J. W., Okaya, Y., Doyne, T., Vand, V., Shimada, A., Lovell, F. M., and Sogo, Y., 1957, X-ray analysis of some biochemically important compounds, Acta Crystallog. 10: 811.CrossRefGoogle Scholar
  174. Philippu, A., and Schümann, H. J., 1966, Uber die Bedeutung der Calcium- und Magnesiumionen für die Speicherung der Nebbenierenmarkhormone, Naunyn-Schmiedeberg’s Arch. Pharmakol. 252: 339.CrossRefGoogle Scholar
  175. Pletscher, A., 1956, Beeinflussung des 5-Hydroxytryptamin-Stoffwechsels im Gehirn durch Isonikotinsaüre-hydrazide, Experientia 12: 479.PubMedCrossRefGoogle Scholar
  176. Pletscher, A., Shore, P. A., and Brodie, B. B., 1955, Serotonin release as a possible mechanism of reserpine action, Science 122: 374.PubMedCrossRefGoogle Scholar
  177. Pletscher, A., Besendorf, H., and Bächtold, H. P., 1958, Benzo[α]chinolizine, eine neue Körperklasse mit Wirkung auf den 5-Hydroxytryptamin- und Noradrenalin-Stoffwechsel des Gehirns, Naunyn-Schmiedeberg’s Arch. Pharmakol. 232: 499.CrossRefGoogle Scholar
  178. Pletscher, A., DaPrada, M., and Berneis, K. H., 1971, Aggregation of biogenic monoamines and nucleotides in subcellular storage organelles, in: Subcellular Organization and Function in Endocrine Tissues ( H. Heller and K. Lederis, eds.) pp. 767–783, Cambridge University Press, Cambridge.Google Scholar
  179. Plummer, A. J., Barrett, W. E., and Rutledge, R., 1955, The action of reserpine on the motility of the digestive tract, Am. J. Digest. Dis. 22: 337.PubMedCrossRefGoogle Scholar
  180. Plummer, A. J., Sheppard, H., and Schulert, A. R., 1957, The metabolism of reserpine, in: Psychotropic Drugs ( S. Garattini and V. Ghetti, eds.) pp. 350–362, Elsevier, Amsterdam.Google Scholar
  181. Poisner, A. M., and Trifarö, J. M., 1967, The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. I. ATP-evoked release of catecholamines, ATP, and protein from isolated chromaffin granules, Mol. Pharmacol. 3: 561.PubMedGoogle Scholar
  182. Quinn, G. P., Shore, P. A., and Brodie, B. B., 1959, Biochemical and pharmacological studies of Ro 1–9569 (tetrabenazine), a non-indole tranquilizing agent with reserpine-like effects, J. Pharmacol. Exptl. Therap. 127: 103.Google Scholar
  183. Räsänen, T., and Taskinen, E., 1967, Protection of the gastric mucosa against lesions caused by reserpine through degranulation of mucosal mast cells, Acta Physiol. Scand. 71: 96.PubMedCrossRefGoogle Scholar
  184. Raymond-Hamet, M., 1939, Le “Rauwolfia vomitoria” Afzelius possède-t-il réellement les vertus thérapeutiques que lui attribuent les guérisseurs indigènes?, Bull. Acad. Med. 122: 30.Google Scholar
  185. Reilly, J. F., Ahlstrom, A. P., Watts, J. S., Cassidy, P. S., and Lusky, L. M., 1969, Influence of age, sex, and cold exposure on susceptibility to reserpine-induced gastric lesions, Toxicol. Appl. Pharmacol. 15: 97.PubMedCrossRefGoogle Scholar
  186. Rieppel, F. W., 1955, Leonhard Rauwolf. Ein Beitrag zu seiner Biographie, Deutsch. Med. Wschr. 80: 653.PubMedCrossRefGoogle Scholar
  187. Rinaldi, F., and Himwich, H. E., 1955, A comparison of effects of reserpine and some barbiturates on the electrical activity of cortical and subcortical structures in the brain of rabbits, Ann. N.Y. Acad. Sci. 61: 27.PubMedCrossRefGoogle Scholar
  188. Robison, M. M., Lucas, R. A., MacPhillamy, H. B., Dziemian, R. L., Hsu, I., Kiesel, R. J., and Morris, M. J., 1961, The development of non-hypotensive sedative drugs from methyl-reserpate, in: 139th American Chemistry Society Meeting Abstracts, p. 3N.Google Scholar
  189. Romeo, S. G., Whalen, R. E., and Tindali, J. P., 1970, Intra-arterial administration of reserpine, Arch. Int. Med. 125: 825.CrossRefGoogle Scholar
  190. Rosecrans, J. A., 1967, Effects of route of administration on the chronic toxicity of reserpine, Psychopharmacologia 10: 452.PubMedCrossRefGoogle Scholar
  191. Rosen, W. E., and O’Conner, J. M., 1961, Rauwolfia alkaloids. XXXVII. Methyl neoreserpate, an isomer of methyl reserpate, Org. Chem. 26: 3051.Google Scholar
  192. Rosengren, E., and Svensson, S. E., 1969, Histamine formation in rat gastric mucosa and lung after injecting reserpine or adrenaline, Brit. J. Pharmacol. 37: 659.CrossRefGoogle Scholar
  193. Roth, R. H., and Stone, E. A., 1968, The action of reserpine on noradrenaline biosynthesis in sympathetic nerve tissue, Biochem. Pharmacol. 17: 1581.PubMedCrossRefGoogle Scholar
  194. Rumpf, G. E., 1755, Herbarii Amboinensis Auctuarium Uytwerf and Schouten, Amsterdam.Google Scholar
  195. Rutishauser, M., 1963, Beeinflussung des Kohlenhydratstoffwechsels des Rattenhirns durch Psychopharmaka mit sedativer Wirkung, Naunyn-Schmiedeberg’s Arch. Pharmakol. 245: 396.CrossRefGoogle Scholar
  196. Rutledge, C. O., and Weiner, N., 1967, The effect of reserpine upon the synthesis of norepinephrine in the isolated rabbit heart, J. Pharmacol. Exptl. Therap. 157: 290.Google Scholar
  197. Saxton, J. E., 1960, The indole alkaloids, in: The Alkaloids ( R. H. F. Manske, ed.) Vol. 7, pp. 1–199, Academic Press, New York.Google Scholar
  198. Schildkraut, J. J., 1969, Neuropsychopharmacology and the Affective Disorders, Little, Brown, Boston.Google Scholar
  199. Schütter, E., and Plummer, A. J., 1964, Tranquilizing drugs from Rauwolfia, in: Psycho- pharmacological Agents ( M. Gordon, ed.) Vol. 1, pp. 9–34, Academic Press, New York.Google Scholar
  200. Schroeder, H. A., and Perry, H. M., 1955, Psychosis apparently produced by reserpine, J. Am. Med. Ass. 159: 839.CrossRefGoogle Scholar
  201. Schümann, H. J., 1958, Die Wirkung von Insulin und Reserpin auf den Adrenalin-und ATP- Gehalt der chromaffinen Granula des Nebennierenmarks, Naunyn-Schmiedeberg’s Arch. Pharmakol. 233: 237.Google Scholar
  202. Schümann, H. J., Grobecker, H., and Schmidt, K., 1965, Über die Wirkung von α-Methyl- Dopa auf den Brenzcatechinamingehalt von Meerschweinchenorganen, Naunyn- Schmiedeberg’s Arch. Pharmakol. 251: 48.CrossRefGoogle Scholar
  203. Seiden, L. S., and Carlsson, A., 1963, Temporary and partial antagonism by -DOPA of reserpine-induced suppression of a conditioned avoidance response, Psychopharmacologia 4: 418.PubMedCrossRefGoogle Scholar
  204. Seiden, L. S., and Carlsson, A., 1964, Brain and heart catecholamine levels after -DOPA administration in reserpine treated mice: Correlations with conditioned avoidance response, Psychopharmacologia 5: 178.PubMedCrossRefGoogle Scholar
  205. Sen, G., and Bose, K. C., 1931, Rauwolfia serpentina, a new Indian drug for insanity and high blood pressure, Indian Med. World 2: 194.Google Scholar
  206. Sheppard, H., Lucas, R. A., and Tsien, W. H., 1955, The metabolism of reserpine-C14, Arch. Int. Pharmacodyn. Therap. 103: 256.Google Scholar
  207. Sheppard, H., Tsien, W. H., Sigg, E. B., Lucas, R. A., and Plummer, A. J., 1957, The metabolism of reserpine-C14. III. C14-concentration vs. time in the brains and other tissues of rats and guinea pigs, Arch. Int. Pharmacodyn. Therap. 113: 160.Google Scholar
  208. Sheppard, H., Tsien, W. H., Plummer, A. J., Peets, E. A., Giletti, B. J., and Schulert, A. R., 1958, Brain reserpine levels following large and small doses of reserpine-H3, Proc. Soc. Exptl. Biol. Med. 97: 717.Google Scholar
  209. Shore, P. A., 1972, Transport and storage of biogenic amines, Ann. Rev. Pharmacol. 12: 209.PubMedCrossRefGoogle Scholar
  210. Shore, P. A., Silver, S. L., and Brodie, B. B., 1955, Interaction of reserpine, serotonin, and lysergic acid diethylamide in brain, Science 122: 284.PubMedCrossRefGoogle Scholar
  211. Shore, P. A., Pletscher, A., Tomich, E., Carlsson, A., Kuntzman, R., and Brodie, B. B., 1957, Role of brain serotonin in reserpine action, Ann. N. Y. Acad. Sci. 66: 609.PubMedCrossRefGoogle Scholar
  212. Slotkin, T. A., 1973, Hypothetical model of catecholamine uptake into adrenal medullary storage vesicles, Life Sci. 13: 675.CrossRefGoogle Scholar
  213. Slotkin, T. A., and Edwards, K., 1973, Effects of reserpine on the content and properties of rat adrenal medullary storage vesicles, Biochem. Pharmacol. 22: 549.PubMedCrossRefGoogle Scholar
  214. Slotkin, T. A., and Kirshner, N., 1971, Uptake, storage, and distribution of amines in bovine adrenal medullary vesicles, Mol. Pharmacol. 7: 581.PubMedGoogle Scholar
  215. Slotkin, T. A., and Kirshner, N., 1973a, Recovery of rat adrenal amine stores after insulin administration, Mol. Pharmacol. 9: 105.PubMedGoogle Scholar
  216. Slotkin, T. A., and Kirshner, N., 19736, Binding of amines to purified bovine adrenal medullary storage vesicle membranes, Biochem. Pharmacol. 22: 2492.Google Scholar
  217. Slotkin, T. A., DiStefano, V., and Au, W. Y. W., 1970, Blood levels and urinary excretion of harmine and its metabolites in man and rats, J. Pharmacol. Exptl. Therap. 173: 26.Google Scholar
  218. Slotkin, T. A., Ferris, R. M., and Kirshner, N., 1971, Compartmental analysis of amine storage in bovine adrenal medullary granules, Mol. Pharmacol. 7: 308.PubMedGoogle Scholar
  219. Smith, A. D., 1968, Biochemistry of adrenal chromaffin granules, in: The Interaction of Drugs and Subcellular Components in Animal Cells ( P. N. Campbell, ed.) pp. 239–292, Churchill, London.Google Scholar
  220. Smith, C. B., and Dews, P. B., 1962, Antagonism of locomotor suppressant effects of reserpine in mice, Psychopharmacologia 3: 55.PubMedCrossRefGoogle Scholar
  221. Smith, E. R., 1963, The effect of norepinephrine infusions upon some responses of reserpine- treated spinal cats to tyramine, J. Pharmacol. Exptl. Therap. 139: 321.Google Scholar
  222. Stitzel, R. E., Wagner, L. A., and Swartz, R. J., 1972, Studies on the microsomal metabolism of 3H-reserpine, J. Pharmacol. Exptl. Therap. 182: 500.Google Scholar
  223. Stjärne, L., 1964, Studies of catecholamine uptake storage and release mechanisms, Acta Physiol. Scand. 62: Suppl. 288.Google Scholar
  224. Stjärne, L., 1972, The synthesis, uptake, and storage of catecholamines in the adrenal medulla: The effect of drugs, Handbook Exptl. Pharmacol. 33: 231.Google Scholar
  225. Stjärne, L., and Lishajko, F., 1966, Drug-induced inhibition of noradrenaline synthesis in vitro in bovine splenic nerve tissue, Brit. J. Pharmacol. 27: 398.PubMedGoogle Scholar
  226. Strubelt, O., 1969, The influence of reserpine, propranolol, and adrenal medullectomy on the hyperglycemic actions of theophylline and caffeine, Arch. Int. Pharmacodyn. Therap. 179: 215.Google Scholar
  227. Sulser, F., Bickel, M. H., and Brodie, B. B., 1962, On mechanism of the antidepressant action of imipramine, in: Proceedings of the First International Pharmacology Meeting ( W. D. M. Paton and P. Lindgren, eds.) Vol. 8, pp. 123–129, Pergamon Press, Oxford.Google Scholar
  228. Sulser, F., Owens, M. L., Strada, S. J., and Dingeil, J. V., 1969, Modification by desipramine (DMI) of the availability of norepinephrine released by reserpine in the hypothalamus of the rat in vivo, J. Pharmacol. Exptl. Therap. 168: 272.Google Scholar
  229. Takemoto, Y., Shore, P. A., Tomich, E. G., Kuntzman, R., and Brodie, B. B., 1957, Studies on the mechanism of reserpine-induced epinephrine release and hyperglycemia, J. Pharmacol. Exptl. Therap. 119: 188.Google Scholar
  230. Taugner, G., 1971, The membrane of catecholamine storage vesicles of adrenal medulla, Naunyn-Schmiedeberg’s Arch. Pharmakol. 270: 392.PubMedCrossRefGoogle Scholar
  231. Taugner, G., and Hasselbach, W., 1966, Über den Mechanismus der Catecholamine- Speicherung in den “chromaffinen Granula” des Nebennierenmarks, Naunyn- Schmiedeberg’s Arch. Pharmakol. 255: 266.CrossRefGoogle Scholar
  232. Taylor, R. E., Jr., and Fregly, M. J., 1962, Effect of reserpine on body temperature regulation of the rat, J. Pharmacol. Exptl. Therap. 138: 200.Google Scholar
  233. Thomas, J. A., Knych, E. T., and Mawhinney, M. G., 1969, Effect of reserpine on the uptake of 1,2-3H-testosterone by mouse prostate glands, Europ. J. Pharmacol. 8: 361.CrossRefGoogle Scholar
  234. Toman, J. E. P., 1963, Some aspects of central nervous pharmacology, Ann. Rev. Pharmacol. 3: 153.CrossRefGoogle Scholar
  235. Trendelenburg, U., 1963, Supersensitivity and subsensitivity to sympathomimetic amines, Pharmacol. Rev. 15: 225.PubMedGoogle Scholar
  236. Trendelenburg, U., 1966, Mechanisms of supersensitivity and subsensitivity to sympathomimetic amines, Pharmacol. Rev. 18: 629.PubMedGoogle Scholar
  237. Trendelenburg, U., 1972, Factors influencing the concentration of catecholamines at the receptors, Handbook Exptl. Pharmacol. 33: 726.Google Scholar
  238. Trifaró, J. M., and Dworkind, J., 1971, Phosphorylation of membrane components of adrenal chromaffin granules by adenosine triphosphate, Mol. Pharmacol. 7: 52.PubMedGoogle Scholar
  239. Troquet, J., Colinet-Lagneaux, D., and Hermann-Gedang, I., 1966, Influence of reserpine on myocardial content of potassium in the rat, Arch. Int. Pharmacodyn. Therap. 163: 232.Google Scholar
  240. Udenfriend, S., Weissbach, H., and Bogdanski, D. F., 1957, Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan, Biol. Chem. 224: 803.Google Scholar
  241. Vakil, R. L., 1949, A clinical trial of Rauwolfia serpentina in essential hypertension, Brit. Heart J. 11: 350.PubMedCrossRefGoogle Scholar
  242. Viveros, O. H., Arqueros, L., and Kirshner, N., 1969a, Mechanism of secretion from the adrenal medulla. V. Retention of storage vesicle membranes following release of adrenaline Mol. Pharmacol. 5: 342.PubMedGoogle Scholar
  243. Viveros, O. H., Arqueros, L., Connett, R. J., and Kirshner, N., 1969α, Mechanism of secretion from the adrenal medulla. IV. The fate of the storage vesicles following insulin and reserpine administration, Mol. Pharmacol. 5: 69.Google Scholar
  244. Viveros, O. H., Arqueros, L., and Kirshner, N., 1971, Mechanism of secretion from the adrenal medulla. VI. Effect of reserpine on the dopamine β-hydroxylase and catecholamine content and on the buoyant density of adrenal storage vesicles, Mol. Pharmacol. 7: 434.PubMedGoogle Scholar
  245. Volle, R. L., 1963, Pharmacology of the autonomic nervous system, Ann. Rev. Pharmacol. 3: 129.CrossRefGoogle Scholar
  246. von Euler, U. S., 1972, Synthesis, uptake and storage of catecholamines in adrenergic nerves, the effect of drugs, Handbook Exptl. Pharmacol. 33: 186.Google Scholar
  247. Waalkes, T. P., and Weissbach, H., 1956, In vivo release of histamine from rabbit blood by reserpine, Proc. Soc. Exptl. Biol. Med. 93: 394.Google Scholar
  248. Waalkes, T. P., Coburn, H., and Terry, L. L., 1959, The effect of reserpine on histamine and serotonin, J. Allergy 30: 408.CrossRefGoogle Scholar
  249. Wagner, L. A., and Stitzel, R. F., 1972, The relation between the subcellular distribution of (3H)-reserpine and its proposed site of action, J. Pharm. Pharmacol. 24: 396.PubMedCrossRefGoogle Scholar
  250. Watts, C. C., 1968, Effects of reserpine on the plasma half-time of [131I] thyroxine, J. Pharm. Pharmacol. 20: 487.PubMedCrossRefGoogle Scholar
  251. Weiner, N., Cloutier, G., Bjur, R., and Pfeffer, R. I., 1972, Modification of norepinephrine synthesis in intact tissue by drugs and during short-term adrenergic nerve stimulation, Pharmacol. Rev. 24: 203.PubMedGoogle Scholar
  252. Wells, H., Briggs, N., and Munson, P. L., 1956, The inhibitory effect of reserpine on ACTH secretion in response to stressful stimuli, Endocrinology 59: 571.PubMedCrossRefGoogle Scholar
  253. Werner, R. I., and Ganong, W. F., 1971, Effect of the depletion of brain catecholamines on puberty and the estrous cycle in the rat, Neuroendocrinology 8: 125.CrossRefGoogle Scholar
  254. Wilchen, D. E. L., Brender, D., Macdonald, G. J., Shorey, C. D., and Hinterberger, H., 1967, Effect of reserpine on the structure of heart mitochondria and the relation to catecholamine depletion, Circ. Res. 21: 203 (Suppl. III).Google Scholar
  255. Wise, J. R., 1969, Inquiry: BronchoSpasm after reserpine? New Engl. J. Med. 281: 563.Google Scholar
  256. Woodson, R. E., Jr., Youngken, H. W., Schüttler, E., and Schneider, J. A., 1957, Rauwolfia: Botany, Pharmacognosy, Chemistry and Pharmacology, Little, Brown, Boston.Google Scholar
  257. Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J., and Kierstead, R. W., 1956α, The total synthesis of reserpine, J. Am. Chem. Soc. 78: 2023.Google Scholar
  258. Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J., and Kierstead, R. W., 1956α, A simplified route to a key intermediate in the total synthesis of reserpine, J. Am. Chem. Soc. 78: 2657.Google Scholar
  259. Zbinden, G., and Studer, A., 1958, Histochemische Untersuchungen über den Einfluss von Iproniazid (Marsilid) auf die durch Reserpin erzeugte Freisetzung von Adrenalin und Noradrenalin aus dem Nebennierenmark, Experientia 14: 201.PubMedCrossRefGoogle Scholar
  260. Zbinden, G., Pletscher, A., and Studer, A., 1957, Hemmung der Reserpinbedingten 5- Hydroxytryptamin-Freisetzung im enterochromaffinen System durch Isopropyl-isoni- cotinsäurehydrazid, Klin. Wschr. 33: 565.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Theodore A. Slotkin
    • 1
  1. 1.Department of Physiology and PharmacologyDuke University Medical CenterDurhamUSA

Personalised recommendations