Advertisement

Neuropoisons pp 169-186 | Cite as

Mechanism of Action of Tetrodotoxin (TTX) and Saxitoxin (STX)

  • Wolf-Dietrich Dettbarn

Abstract

Marine toxins such as TTX and STX have aroused the interest of physiologists, biochemists, pharmacologists, and biological warfare people, as well as writers of spy and mystery stories. In the hands of the neuroscientist they have been turned into helpful instruments vital for the study of nerve function and excitable membranes. In this chapter on modes of action, I shall limit myself to the studies of TTX and STX on nerve and muscle. On these tissues they have been studied extensively and in some depth. Neither the historical development nor chemistry of these compounds will be discussed, because there are a number of excellent papers available covering the subject (Kao, 1966). Before discussing the mode of action of TTX and STX, one must say something about the nature of the nerve impulse.

Keywords

Potassium Current Sodium Current Nerve Impulse Cationic Form Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albuquerque, E. X., S. H. Chung, and D. Ottoson (1969), Acta Physiol. Scand., 75:301.PubMedCrossRefGoogle Scholar
  2. Bloedel, J., P. W. Gage, R. Llinas, and D. M. J. Quastel (1966), Nature, 212:49.PubMedCrossRefGoogle Scholar
  3. Camejo, G. and R. Villegas (1969), Biochim. Biophys. Acta, 173:351.PubMedCrossRefGoogle Scholar
  4. Camougis, G., B. H. Takman, and J. R. P. Tasse (1967), Science, 156:1625.PubMedCrossRefGoogle Scholar
  5. Cheng, K. K., Y. L. Ling, and J. C. Wang (1968), Quart. J. Exp. Physiol., 53:119.PubMedGoogle Scholar
  6. Deguchi, T. (1967), Jap. J. Pharmacol., 17:267.PubMedCrossRefGoogle Scholar
  7. Dettbarn, W-D., H. B. Higman, P. Rosenberg, and D. Nachmansohn (1960), Science, 132:300.PubMedCrossRefGoogle Scholar
  8. Dettbarn, W-D., H. B. Higman, E. Bartels, and T. Podleski (1965), Biochem. Biophy. Acta, 94:478.Google Scholar
  9. Evans, M. H. (1968a), Toxicon, 5:289.PubMedCrossRefGoogle Scholar
  10. Evans, M. H. (1968b), Brit. J. Pharmacol., 34:664.Google Scholar
  11. Fleisher, J. H., P. J. Killos, and C. S. Harrison (1961), J. Pharmacol., 133:98.Google Scholar
  12. Hagiwara, S., and S. Nakajima (1966), J. Gen. Physiol., 49:793.PubMedCrossRefGoogle Scholar
  13. Hille, B. (1968), J. Gen. Physiol., 51:199.PubMedCrossRefGoogle Scholar
  14. Hodgkin, A. L. and A. F. Huxley (1952), J. Physiol., 117:500.PubMedGoogle Scholar
  15. Hopkins, E. W., III and E. J. Herbst (1968), Biochem. Biophys. Res. Commun., 30:528.PubMedCrossRefGoogle Scholar
  16. Kao, C. Y. (1966a), Pharmacol. Rev., 18:997.PubMedGoogle Scholar
  17. Kao, C. Y. (1966b), Comparison of the biological actions of tetrodotoxin and saxitoxin, in “Animal Toxins” (F. E. Russell and P. R. Saunders, eds.) Pergamon Press Ltd., Oxford, England, pp. 109–114.Google Scholar
  18. Kao, C. Y. and F. A. Fuhrman (1963), J. Pharmacol., 140:31.Google Scholar
  19. Kao, C. Y. and A. Nishiyama (1965), J. Physiol., 180:50.PubMedGoogle Scholar
  20. Kao, C. Y., T. Suzuki, A. L. Kleinhaus, and M. Y. Siegman (1967), Arch. Intern. Pharmacodyn., 165:438.Google Scholar
  21. Katz, B. and R. Miledi (1967), Proc. Roy. Soc. (Biol.), 167:8.CrossRefGoogle Scholar
  22. Katz, B. and R. Miledi (1968), J. Physiol., 199:729.PubMedGoogle Scholar
  23. Katz, B. and R. Miledi (1969), J. Physiol., 203:459.PubMedGoogle Scholar
  24. Koizumi, K., D. G. Levine, and C. McC. Brooks (1967), Neurology, 17:395.PubMedGoogle Scholar
  25. Moore, J. W., M. P. Blaustein, N. C. Anderson, and T. Narahashi (1967), J. Gen. Physiol., 50:1401.PubMedCrossRefGoogle Scholar
  26. Mosher, H. S., F. A. Fuhrman, H. D. Buchwald, and H. G. Fischer (1964), Science, 144: 1100.PubMedCrossRefGoogle Scholar
  27. Nakamura, Y., S. Nakajima, and H. Grundfest (1964), Science, 146:266.PubMedCrossRefGoogle Scholar
  28. Nakamura, Y., S. Nakajima, and H. Grundfest (1965), J. Gen. Physiol., 48:985.CrossRefGoogle Scholar
  29. Narahashi, T., T. Deguchi, N. Urakawa, and Y. Ohkubo (1960), Amer. J. Physiol. 198:934.PubMedGoogle Scholar
  30. Narahashi, T., J. W. Moore, and W. Scott (1964), J. Gen. Physiol., 74:965.CrossRefGoogle Scholar
  31. Narahashi, T., N. C. Anderson, and J. W. Moore (1966), Science, 153:765.PubMedCrossRefGoogle Scholar
  32. Narahashi, T., J. W. Moore, and R. N. Poston (1967), Science, 156:976.PubMedCrossRefGoogle Scholar
  33. Narahashi, T., H. G. Haas, and E. P. Therrjen (1967). Science, 157:1441.PubMedCrossRefGoogle Scholar
  34. Narahashi, T., J. W. Moore, and D. T. Frazier (1969), J. Pharm. Exp. Therap., 169:224.Google Scholar
  35. Nishi, K. and M. Sato (1966), J. Physiol., 184:376.PubMedGoogle Scholar
  36. Nishiyama, A. (1968a), Exp. Med., 95:201.Google Scholar
  37. Nishiyama, A. (1968b), Nature, 219:379.CrossRefGoogle Scholar
  38. Ohnishi, T. and A. Ishida (1967), Biochem. Biophys. Res. Commun., 27:552.PubMedCrossRefGoogle Scholar
  39. Ozeki, M. and M. Sato (1965), J. Physiol., 180:186.PubMedGoogle Scholar
  40. Ranney, B. K., F. A. Fuhrman, and J. L. Schmiegel (1968), Arch. Intern. Pharmacodyn., 175:193.Google Scholar
  41. Takata, M., J. W. Moore, C. Y. Kao, and F. A. Fuhrman (1966), J. Gen. Physiol., 49:977.PubMedCrossRefGoogle Scholar
  42. Tsuda, K., R. Tachikawa, K. Sakai, C. Tamura, O. Amakasu, M. Kawamura, and S. Ikuma (1964), Chem. Pharm. Bull, 12:642.PubMedCrossRefGoogle Scholar
  43. Villegas, R. and G. Camejo (1968), Biochim. Biophys. Acta, 163:421.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Wolf-Dietrich Dettbarn
    • 1
  1. 1.Department of PharmacologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations