Advertisement

Neuropoisons pp 111-137 | Cite as

The Use of Snake Venoms as Pharmacological Tools in Studying Nerve Activity

  • Philip Rosenberg

Abstract

Most texts and review articles on venoms have been primarily concerned with chemical properties or mechanisms of action (Bücherl et al., 1968; Jiménez-Porras, 1968; Devi, 1968; Sarkar and Devi, 1968; Russell, 1967; Russell and Saunders, 1967; Condrea and de Vries, 1965; Meldrum, 1965; Braganca and Aravindakshan, 1962; Buckley and Porges, 1956; Zeller, 1951). Indeed, understanding of the pharmacological actions of venoms was greatly aided by the study of their effects on various organ systems such as nerve, muscle, and blood. It was, however, not so readily apparent that this complex, specialized saliva of snakes could be used as a tool for analysis of physiological processes. For example, by 1963 about 6000 papers on snake venoms and venomous snakes had been published (Russell and Scharf-fenberg, 1964), with relatively few of these having as their direct concern a better understanding of the physiological processes affected by venoms. A notable exception was the process of blood coagulation, which has been clarified by studying the action of snake venoms or venom components (Jimenez-Porras, 1968; Condrea and DeVries, 1965; Boquet, 1964). Snake venoms have also been useful as tools in general biochemical research, where the primary interest has been in extracting and studying enzymes obtained from venoms (Zeller, 1966).

Keywords

AChE Activity Permeability Barrier Snake Venom Giant Axon Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. D. and E. P. Richardson (1961), The demyelinating diseases of the human nervous system, in “Chemical Pathology of the Nervous System” (J. Folch-Pi, ed.) Pergamon Press, New York, pp. 162–194.Google Scholar
  2. Angeletti, P. U., P. Calissano, J. S. Chen, and R. Levi-Montalcini (1967), Biochim. Biophys. Acta, 147:180.PubMedGoogle Scholar
  3. Beiler, J. M., R. Brendel, and G. J. Martin (1956), J. Pharmacol Exp. Therap., 118:415.Google Scholar
  4. Birkmayer, W. and E. Neumayer (1957), Deut. Z. Nervenheilk, 177:117.Google Scholar
  5. Boquet, P. (1964), Toxicon, 2:5.Google Scholar
  6. Braganca, B. M. and I. Aravindakshan (1962), Neurochemical effects of snake venoms, in “Neurochemistry” (A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), Charles C. Thomas, Springfield, Ill., pp. 840–850.Google Scholar
  7. Braganca, B. M. and J. H. Quastel (1952), Nature, 169:695.PubMedGoogle Scholar
  8. Braganca, B. M. and J. H. Quastel (1953), Biochem. J., 53:88.PubMedGoogle Scholar
  9. Brzin, ML, W.-D. Dettbarn, and P. Rosenberg (1965a), Biochem. Pharmacol., 14:919.PubMedGoogle Scholar
  10. Brzin, M., W.-D. Dettbarn, P. Rosenberg, and D. Nachmansohn (1965b), J. Cell Biol., 26:353.PubMedGoogle Scholar
  11. Brzin, M., V. M. Tennyson, and P. E. Duffy (1966), J. Cell Biol., 31:215.PubMedGoogle Scholar
  12. Bücherl, W., E. E. Buckley, and V. Deulofeu (eds.) (1968), “Venomous Animals and Their Venoms,” vol. 1, Academic Press, New York.Google Scholar
  13. Buckley, E. E. and N. Porges (eds.), 1956, “Venoms,” American Association for the Advancement of Science, Washington, D.C.Google Scholar
  14. Bullock, T. H., D. Nachmansohn, and M. A. Rothenberg (1946), J. Neurophysiol, 9:9.PubMedGoogle Scholar
  15. Chang, C. C. (1960), J. Formosan Med. Ass., 59:315.Google Scholar
  16. Chatterjee, A. K. (1949), Indian J. Med. Res., 37:241.Google Scholar
  17. Cohen, S. (1958), A nerve growth promoting protein, in “Chemical Basis of Development,” Johns Hopkins Press, Baltimore, pp. 665–667.Google Scholar
  18. Cohen, S. (1959), J. Biol. Chem., 234:1129.PubMedGoogle Scholar
  19. Cohen, S. and R. Levi-Montalcini (1956), Proc. Nat. Acad. Sci., 42:571.PubMedGoogle Scholar
  20. Condrea, E. and A. de Vries, Toxicon, 2:261.Google Scholar
  21. Condrea, E. and P. Rosenberg (1968), Biochim. Acta, 150:271.Google Scholar
  22. Condrea, E., A. de Vries, and J. Mager (1962), Biochim. Biophys. Acta, 58:389.PubMedGoogle Scholar
  23. Condrea, E., A. de Vries, and J. Mager (1964), Biochim. Biophys. Acta, 84:60.PubMedGoogle Scholar
  24. Condrea, E., Y. Avi-Dor, and J. Mager (1965), Biochim. Biophys. Acta, 110:337.PubMedGoogle Scholar
  25. Condrea, E., P. Rosenberg, and W.-D. Dettbarn (1967), Biochim. Biophys. Acta, 135:669.PubMedGoogle Scholar
  26. Delezenne, C. and S. Ledebt (1911), C. R. Acad. Sci. (Paris), 152:790.Google Scholar
  27. Delezenne, C. and S. Ledebt (1912), C. R. Acad. Sci. (Paris), 155:1101.Google Scholar
  28. Dettbarn, W.-D. (1963), Life Sciences, 12:910.PubMedGoogle Scholar
  29. Dettbarn, W.-D. and F. A. Davis (1963), Biochim. Biophys. Acta, 66:397.PubMedGoogle Scholar
  30. Dettbarn, W.-D. and F. C. G. Hoskin (1962), Biochim. Biophys. Acta, 62:566.PubMedGoogle Scholar
  31. Dettbarn, W.-D. and P. Rosenberg (1962), Biochem. Pharmacol., 11:1025.PubMedGoogle Scholar
  32. Dettbarn, W.-D. and P. Rosenberg (1966), J. Gen. Physiol., 50:447.PubMedGoogle Scholar
  33. Dettbarn, W.-D., P. Rosenberg, and D. Nachmansohn (1964), Life Sciences, 3:55.PubMedGoogle Scholar
  34. Devi, A. (1968), The protein and nonprotein constituents of snake venoms, in “Venomous Animals and Their Venoms” (W. Bücherl, E. E. Buckley, and V. Deulofeu, eds.), Academic Press, New York, pp. 119–165.Google Scholar
  35. Eccles, J. C. (1964), “The Physiology of Synapses,” Academic Press, New York.Google Scholar
  36. Edwards, S. W. and E. G. Ball (1954), J. Biol. Chem., 209:619.PubMedGoogle Scholar
  37. Elliott, W. B., J. M. Augustyn, and C. Gans (1966), Mem. Inst. Butantan Simp. Intern., 33:411.Google Scholar
  38. Feinstein, M. B. (1964), J. Gen. Physiol., 48:357.PubMedGoogle Scholar
  39. Fleischer, B., A. Casu, and S. Fleischer (1966), Biochem. Biophys. Res. Comm., 24:189.PubMedGoogle Scholar
  40. Gautrelet, J. and E. Corteggiani (1938), C. R. Acad. Sci., 207:465.Google Scholar
  41. Gautrelet, J. and E. Corteggiani (1939), C. R. Soc. Biol., 131:951.Google Scholar
  42. Goldman, D. E. (1964), Biophys. J., 4:167.Google Scholar
  43. Green, D. E. and S. Fleischer (1963), Biochim. Biophys. Acta, 70:554.PubMedGoogle Scholar
  44. Habermann, E. (1960), Arch. Exp. Pathol. Pharmak., 238:502.Google Scholar
  45. Habermann, E. and B. Krusche (1962), Biochem. Pharmacol., 11:400.PubMedGoogle Scholar
  46. Hadidian, Z. (1956), Proteolytic activity and physiologic and pharmacologic actions of Agkistrodon piscivorus venom, in “Venoms” (E. E. Buckley and N. Porges, eds.) American Association for the Advancement of Science, Washington, D.C., pp. 205–215.Google Scholar
  47. Heilbronn, E. (1969), J. Neurochem., 16:627.PubMedGoogle Scholar
  48. Hodgkin, A. L. (1964), “The Conduction of the Nerve Impulse,” C. C. Thomas, Springfield, Ill.Google Scholar
  49. Hokin, L. E. and M. R. Hokin (1963), The role of phosphatides in active transport with particular reference to sodium transport, in “Proc. First Int. Pharmacol. Meeting,” vol. 4, “Drugs and Membranes” (C. A. M. Hogben, ed.) The Macmillan Co., New York, pp. 23–40.Google Scholar
  50. Hoskin, F. C. G. and P. Rosenberg (1964), J. Gen. Physiol., 47:1117.PubMedGoogle Scholar
  51. Hoskin, F. C. G. and P. Rosenberg (1965), J. Gen. Physiol., 49:47.PubMedGoogle Scholar
  52. Hoskin, F. C. G. and P. Rosenberg (1967), Science, 156:966.PubMedGoogle Scholar
  53. Hoskin, F. C. G., P. Rosenberg, and M. Brzin (1966), Proc. Nat. Acad. Sci., 55:1231.PubMedGoogle Scholar
  54. Hoskin, F. C. G., L. T. Kremzner, and P. Rosenberg (1969), Biochem. Pharmacol., 18:1727.PubMedGoogle Scholar
  55. Hudson, A. J., J. H. Quastel, and P. G. Scholefield (1960), J. Neurochem., 5:177.PubMedGoogle Scholar
  56. Hughes, A. (1935), Biochem. J., 29:437.PubMedGoogle Scholar
  57. Hunter, W. K. (1909), Proc. R. Soc. Med., 3:105.Google Scholar
  58. Ibraham, S. A., H. Saunders, and R. H. S. Thompson (1964), Biochem. J., 93:588.Google Scholar
  59. Jiménez-Porras, J. M. (1968), Annual Review of Pharmacology, 8:299.PubMedGoogle Scholar
  60. Katz, B. (1966), “Nerve, Muscle and Synapse,” McGraw-Hill Book Co., New York.Google Scholar
  61. Kellaway, C. H. and H. F. Holden (1932), Aust. J. Exp. Biol. Med. Sci., 10:167.Google Scholar
  62. Kirshmann, Ch., E. Condrea, N. Moav, S. Aloof, and A. de Vries (1964), Arch. Int. Pharmacodyn., 150:372.Google Scholar
  63. Klibansky, C., J. Shiloah, and A. de Vries (1964), Biochem. Pharmacol., 13:1107.PubMedGoogle Scholar
  64. Lamb, G. and W. K. Hunter (1904), Lancet, 1:20.Google Scholar
  65. Lee, C. Y. and C. C. Chang (1966), Mem. Inst. Butantan Simp. Int., 33:555.Google Scholar
  66. Lenard, J. and S. J. Singer (1966), Proc. Nat. Acad. Sci., 56:1828.PubMedGoogle Scholar
  67. Lenard, J. and S. J. Singer (1968), Science, 159:738.PubMedGoogle Scholar
  68. Levi-Montalcini, R. (1958), Chemical stimulation of nerve growth, in “Chemical Basis of Development” (W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, pp. 646–664.Google Scholar
  69. Levi-Montalcini, R. and P. U. Angeletti (1961), Biological properties of a nerve growth promoting protein and its antiserum, in “Regional Neurochemistry” (S. S. Kety and J. Elkes, eds.), Pergamon Press, New York, pp. 362–376.Google Scholar
  70. Levi-Montalcini, R. and P. U. Angeletti (1968a), Physiol Rev., 48:534.PubMedGoogle Scholar
  71. Levi-Montalcini, R. and P. U. Angeletti (1968b), Biological aspects of the nerve growth factor, in “Ciba Found. Symp. Growth of the Nervous System” (G. E. W. Wolstenholme and M. O’Connor, eds.), Churchill, London, pp. 126–147.Google Scholar
  72. Levi-Montalcini, R. and B. Booker (1960a), Proc. Nat. Acad. Sci., 42:373.Google Scholar
  73. Levi-Montalcini, R. and B. Booker (1960b), Proc. Nat. Acad. Sci., 42:384.Google Scholar
  74. Levi-Montalcini, R. and S. Cohen (1956), Proc. Nat. Sci., 42:695.Google Scholar
  75. Long, C. and M. F. Maguire (1954), Biochem. J., 57:223.PubMedGoogle Scholar
  76. Macfarlane, M. G. (1950), Biochem. J., 47:267.PubMedGoogle Scholar
  77. Macfarlane, M. G. and B. C. J. G. Knight (1941), Biochem. J., 35:884.PubMedGoogle Scholar
  78. Magee, W. L. and R. H. S. Thompson (1960), Biochem. J., 77:526.PubMedGoogle Scholar
  79. Martin, R. and P. Rosenberg (1968), J. Cell Biol., 36:341.PubMedGoogle Scholar
  80. Meldrum, B. S. (1965), Pharmacol Rev., 17:393.PubMedGoogle Scholar
  81. Minton, S. A. (1956), Some properties of North American pit viper venoms and their correlation with phylogeny, in “Venoms” (E. E. Buckley and N. Porges, eds.), American Association for the Advancement of Science, Washington, D.C., pp. 145–151.Google Scholar
  82. Morazain, R. and P. Rosenberg (1970), Lipid changes in triorthocreasyl phosphate- induced neuropathy, Toxicol. Applied Pharmacol., 16, 461.Google Scholar
  83. Morrison, L. R. and P. C. Zamecnik (1950), Arch. Neurol. Psychiat., 63:367.Google Scholar
  84. Nachmansohn, D. (1959), “Chemical and Molecular Basis of Nerve Activity,” Academic Press, New York.Google Scholar
  85. Nachmansohn, D. (1969), J. Gen. Physiol., 54:187s.Google Scholar
  86. Narahashi, T. and J. M. Tobias (1964), Amer. J. Physiol., 207:1441.PubMedGoogle Scholar
  87. Nelson, P. G. (1958), J. Cell. Comp. Physiol., 52:127.Google Scholar
  88. Nygaard, A. P. and J. B. Sumner (1953), J. Biol. Chem., 200:723.PubMedGoogle Scholar
  89. Nygaard, A. P., M. V. Dianzani, and G. F. Bahr (1954), Exp. Cell. Res., 6:453.PubMedGoogle Scholar
  90. Okonogi, T., S. Hoshi, M. Honma, M. Mitsuhashi, S. Maeno, and Y. Sawai (1960), Jap. J. Microbiol, 4:297.PubMedGoogle Scholar
  91. Petrushka, E., J. H. Quastel, and P. G. Scholefield (1959), Canad. J. Biochem. Physiol., 37:975.PubMedGoogle Scholar
  92. Robertson, J. D. (1963), Unit membranes: a review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes, in “Cellular Membranes in Development” (M. Locke, ed.) Academic Press, New York, p.1.Google Scholar
  93. Rosenberg, P. (1960), Biochem. Pharmacol., 3:212.PubMedGoogle Scholar
  94. Rosenberg, P. (1965), Toxicon, 3:125.PubMedGoogle Scholar
  95. Rosenberg, P. (1966), Mem. Inst. Butantan Simp. Int., 33:477.Google Scholar
  96. Rosenberg, P. (1970), Toxicon, in press.Google Scholar
  97. Rosenberg, P. and E. Bartels (1967), J. Pharmacol Exp. Therap., 155:532.Google Scholar
  98. Rosenberg, P. and E. Condrea (1968), Biochem. Pharmacol., 17:2033.PubMedGoogle Scholar
  99. Rosenberg, P. and W.-D. Dettbarn (1963), Biochim. Biophys. Acta, 69:103.Google Scholar
  100. Rosenberg, P. and W.-D. Dettbarn (1964), Biochem. Pharmacol., 13:1157.PubMedGoogle Scholar
  101. Rosenberg, P. and W.-D. Dettbarn (1967), Use of venoms in testing for essentiality of Cholinesterase in conduction, in “Animal Toxins” (F. E. Russell and P. R. Saunders, eds.), Pergamon Press, New York, pp. 379–388.Google Scholar
  102. Rosenberg, P. and S. Ehrenpreis (1961), Biochem. Pharmacol., 8:192.PubMedGoogle Scholar
  103. Rosenberg, P. and H. Higman (1960), Biochim. Biophys. Acta, 45:348.PubMedGoogle Scholar
  104. Rosenberg, P. and F. C. G. Hoskin (1963), J. Gen. Physiol., 46:1065.PubMedGoogle Scholar
  105. Rosenberg, P. and F. C. G. Hoskin (1965), Biochem. Pharmacol., 14:1765.PubMedGoogle Scholar
  106. Rosenberg, P. and H. G. Mautner (1967), Science, 155:1569.PubMedGoogle Scholar
  107. Rosenberg, P. and K. Y. Ng (1963), Biochim. Biophys. Acta, 75:116.PubMedGoogle Scholar
  108. Rosenberg, P. and T. R. Podleski (1962), J. Pharmacol Exp. Therap., 137:249.Google Scholar
  109. Rosenberg, P. and T. R. Podleski (1963), Biochim. Biophys. Acta, 75:104.PubMedGoogle Scholar
  110. Rosenberg, P., H. Higman, and D. Nachmansohn (1960), Biochim. Biophys. Acta, 44:151.PubMedGoogle Scholar
  111. Rosenberg, P., H. G. Mautner, and D. Nachmansohn (1966), Proc. Nat. Acad. Sci., 55:835.PubMedGoogle Scholar
  112. Rossiter, R. J. (1961), The chemistry of wallerian degeneration, in “Chemical Pathology of the Nervous System” (J. Folch-Pi, ed.), Pergamon Press, New York, pp. 207–230.Google Scholar
  113. Rothenberg, M. A., D. B. Sprinson, and D. Nachmansohn (1948), J. Neurophysiol. 11:111.PubMedGoogle Scholar
  114. Roy, A. C. (1945), Nature, 155:696.Google Scholar
  115. Russell, F. E. (1967), Clin. Pharmacol. Therap., 8:849.Google Scholar
  116. Russell, R. E. and T. E. Long (1961), Effects of venoms on neuromuscular transmission, in “Second International Symp. on Myasthenia gravis,” vol. III (H. R. Viets, ed.), Charles C. Thomas, Springfield, Ill., pp. 101–116.Google Scholar
  117. Russell, F. E. and P. R. Saunders (eds.) (1967), “Animal Toxins,” Pergamon Press, New York.Google Scholar
  118. Russell, F. E. and R. S. Scharffenberg (1964), “Bibliography of Snake Venoms and Venomous Snakes,” Bibliographic Associates, Inc., West Covina, Calif.Google Scholar
  119. Sabatini, M. T., A. P. delraldi, and E. deRobertis (1965), J. Exp. Neurol., 12:370.Google Scholar
  120. Sarkar, N. K. and A. Devi (1968), Enzymes in snake venoms, in “Venomous Animals and Their Venoms” (Bücherl, W., Buckley, E. E., and Deulofeu, V., eds.), vol. 1, Academic Press, New York, pp. 167–216.Google Scholar
  121. Sjöstrand, F. X. (1963), The structure and formation of the myelin sheath, in “Mechanisms of Demyelination” (A. S. Rose and C. M. Pearson, eds.), McGraw-Hill, New York, pp. 1–43.Google Scholar
  122. Swank, R. L. (1961), “A Biochemical Basis of Multiple Sclerosis,” Charles C. Thomas, Springfield, Ill.Google Scholar
  123. Tasaki, I. (1968), “Nerve Excitation. A Macromolecular Approach,” Charles C. Thomas, Springfield, Ill.Google Scholar
  124. Thompson, R. H. S. (1964), Lipolytic enzymes and demyelination, in “Metabolism and Physiological Significance of Lipids” (R. M. C. Dawson and E. N. Rhodes, eds.), Wiley & Sons, New York, pp. 541–551.Google Scholar
  125. Tobias, J. M. (1955), J. Cell. Comp. Physiol., 46:183.Google Scholar
  126. Tobias, J. M (1958), J. Cell. Comp. Physiol., 52:89.Google Scholar
  127. Tobias, J. M. (1960), J. Gen. Physiol., 43:57.PubMedGoogle Scholar
  128. Toman, J. E. P. (1949), Electroenceph. Clin. Neurophysiol, 1:33.PubMedGoogle Scholar
  129. Vidal, J. C., B. N. Badano, A. O. M. Stoppani and A. Bovens (1966), Mem. Inst. Butantan Simp. Int., 33:913.Google Scholar
  130. Vidal Breard, J. J. and V. E. Elias (1950), Arch. Farm. Bioquim. Tucman, 5:77.Google Scholar
  131. Villegas, G. M. and R. Villegas (1960), J. Ulstrastruct. Res., 3:362.Google Scholar
  132. Wallach, D. F. H. and P. H. Zahler (1966), Proc. Nat. Acad. Sci., 56:1552.PubMedGoogle Scholar
  133. Walsh, R. R. and S. E. Deal (1959), Amer. J. Phvsiol., 197:547.Google Scholar
  134. Walsh, R. R. and G. D. Webb (1963), Biochem. Pharmacol., 12:451.PubMedGoogle Scholar
  135. Webb, G. D. and H. G. Mautner (1966), Biochem. Pharmacol., 15:2105.PubMedGoogle Scholar
  136. Whittaker, V. P. (1961), Biochem. Pharmacol., 5:392.PubMedGoogle Scholar
  137. Wilson, I. B. and S. Ginsburg (1955), Biochim. Biophys. Acta., 18:168.PubMedGoogle Scholar
  138. Witter, R. F. and M. A. Cottone (1956), Biochim. Biophys. Acta, 22:364.PubMedGoogle Scholar
  139. Witter, R. F., A. Morrison, and G. R. Shepardson (1957), Biochim. Biophys. Acta, 26:120.PubMedGoogle Scholar
  140. Wooldridge, W. R. and C. Higginbottom (1938), Biochem. J., 32:1718.PubMedGoogle Scholar
  141. Zeller, E. A. (1949), Helv. Chim. Acta, 32:94.PubMedGoogle Scholar
  142. Zeller, E. A. (1951), Enzymes as essential components of bacterial and animal toxins, in “The Enzymes,” vol. 1, pt. 2 (J. B. Sumner and K. Myrback, eds.), Academic Press, New York, pp. 986–1013.Google Scholar
  143. Zeller, E. A. (1966), Mem. Inst. Butantan Simp. Intern., 33:349.Google Scholar
  144. Ziegler, F. D., L. Vázquez-Colón, W. B. Elliott, A. Taub, and C. Gans (1965), Biochemistry, 4:555.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Philip Rosenberg
    • 1
  1. 1.Division of Pharmacology, School of Pharmacy and Pharmacy Research InstituteThe University of ConnecticutStorrsUSA

Personalised recommendations