Neuropoisons pp 325-347 | Cite as

Botulinum Toxin as a Tool for Research on the Nervous System

  • Daniel B. Drachman


In recent years there has been a great increase of interest in the mechanisms by which nerves transfer information to other nerves and to nonneural end organs. New chemical, pharmacological and physiological techniques have been developed to study the variety of neurotransmitter agents and mechanisms which exist in nature. Nevertheless, our knowledge of the sequence of events from synthesis of a transmitter through its ultimate effect at the innervated end-organ is incomplete for any given agent or synapse.


Botulinum Toxin Chick Embryo Nerve Ending Motor Nerve White Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambache, N. (1949), J. Physiol., 108:127.Google Scholar
  2. Ambache, N. (1951), J. Physiol., 113:1.PubMedGoogle Scholar
  3. Ambache, N. and A. W. Lessin (1955), J. Physiol., 127:449.PubMedGoogle Scholar
  4. Andersson-Cedergren, E. (1959), J. Ultrast. Res. Suppl., 1:5.CrossRefGoogle Scholar
  5. Bishop, G. H. and J. J. Bronfenbrenner (1936), Amer. J. Physiol., 117:393.Google Scholar
  6. Brooks, V. B. (1956), J. Physiol., 134:264.PubMedGoogle Scholar
  7. Bueker, E. D. (1943), J. Exp. Zool., 93:99.CrossRefGoogle Scholar
  8. Buller, A. J., J. C. Eccles, and R. M. Eccles (1960), J. Physiol., 150:417.PubMedGoogle Scholar
  9. Burgen, A. S. V., F. Dickens, and L. J. Zatman (1949), J. Physiol. (London), 109:10.Google Scholar
  10. Burn, H. and M. J. Rand (1965), Ann. Rev. Pharmac., 5:163.CrossRefGoogle Scholar
  11. Cardella, M. A. (1964), Botulinum toxoids, in “Botulism, Proceedings of a Symposium,” U.S. Public Health Service, Cincinnati.Google Scholar
  12. Carpenter, F. G. (1967), J. Physiol., 188:1.PubMedGoogle Scholar
  13. Dawson, D. and F. C. A. Romanul (1964), Arch. Neurol., 13:263.Google Scholar
  14. Del Castillo, J. and B. Katz (1954), J. Physiol. (London), 124:560.Google Scholar
  15. Del Castillo, J. and B. Katz (1955), J. Physiol., 128:396.Google Scholar
  16. Denny-Brown, D. (1929), Proc. Roy. Soc. B, 104:371.CrossRefGoogle Scholar
  17. Denny-Brown, D. and C. Bolnner (1944), Arch. Neurol Psychiat., 51:1.Google Scholar
  18. de Robertis, E. and H. S. Bennett (1954), Fed. Proc., 13:35.Google Scholar
  19. Dickson, E. C. and R. Shevky (1923), J. Exp. Med., 37:711.PubMedCrossRefGoogle Scholar
  20. Drachman, D. B. (1964), Science, 145:719.PubMedCrossRefGoogle Scholar
  21. Drachman, D. B. (1967), Arch. Neurol., 17:206.PubMedCrossRefGoogle Scholar
  22. Drachman, D. B. (1968), The role of acetylcholine as a trophic neuromuscular transmitter, in “Ciba Foundation Symposium on Growth of the Nervous System” (G. E. W. Wolstenholme and M. O’Connor, eds.), J. & A. Churchill Ltd., London, p. 251.Google Scholar
  23. Drachman, D. B. and A. J. Coulombre (1962a), Science, 138:144.PubMedCrossRefGoogle Scholar
  24. Drachman, D. B. and A. J. Coulombre (1962b), Lancet, II:523.CrossRefGoogle Scholar
  25. Drachman, D. B. and J. Houk (1969), Amer. J. Physiol., 216:1453.PubMedGoogle Scholar
  26. Drachman, D. B. and P. D. F. Murray (1969), J. Embryol. Exp. Morphol, 22 No. 3:349.PubMedGoogle Scholar
  27. Drachman, D. B. and F. C. A. Romanul, Arch. Neurol., in press.Google Scholar
  28. Drachman, D. B. and L. Sokiloff (1966), Developmental Biol., 14:401.CrossRefGoogle Scholar
  29. Duchen, L. W. and S. J. Strich (1968), Quart. J. Physiol., 53:84.Google Scholar
  30. Eccles, J. C. (1964), “The Physiology of Synapses,” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  31. Eccles, J. C., R. M. Eccles, and W. Kozak (1962), J. Physiol., 163:324.PubMedGoogle Scholar
  32. Edds, M. V. (1953), Rev. Biol., 28:260.CrossRefGoogle Scholar
  33. Elmqvist, D. and D. S. Feldman (1965), J. Physiol., 181:487.PubMedGoogle Scholar
  34. Emmelin, N. (1961), J. Physiol., 156:121.PubMedGoogle Scholar
  35. Fatt, P. and B. Katz (1950), Nature (London), 166:597.CrossRefGoogle Scholar
  36. Fatt, P. and B. Katz (1952), J. Phvsiol. (London), 117:109.Google Scholar
  37. Fell, H. and R. B. Canti (1934), Proc. Royal Soc. Bull., 116:316.CrossRefGoogle Scholar
  38. Fex, S., B. Sonesson, S. Thesleff, and J. Zelena (1966), J. Physiol., 184:872.PubMedGoogle Scholar
  39. Gage, P. W. and D. M. J. Quastel (1966), J. Physiol., 185:95.PubMedGoogle Scholar
  40. Guth, L. (1968), Ann. Rev. Physiol., 48:645.Google Scholar
  41. Guth, L. (1969a), Neurosci. Res. Prog. Bull., 7:1.Google Scholar
  42. Guth, L. (1969b), Exp. Neurol., 24:508.PubMedCrossRefGoogle Scholar
  43. Guth, L., R. W. Albers, and W. C. Brown (1964), Exp. Neurol., 10:236.PubMedCrossRefGoogle Scholar
  44. Gutmann, E. and R. Zak (1961), Physiol. Bohemoslov. 10:493.PubMedGoogle Scholar
  45. Hamburger, V. and M. Waugh (1940), Physiol. Zoo., 13:367.Google Scholar
  46. Hebb, C. (1963), Formation, storage and liberation of acetylcholine, in “Handbuch der Experimentellen Pharmakologie” (G.B. Koelle, ed.), Chap. 3, Springer-Verlag, Berlin.Google Scholar
  47. Hilton, S. M. and G. P. Lewis (1955), J. Physiol., 128:235.PubMedGoogle Scholar
  48. Hogan, E. L., D. M. Dawson, and F. C. A. Romanul (1965), Arch. Neurol., 13:274.PubMedCrossRefGoogle Scholar
  49. Hubbard, J. I. and S. Kwanbunbumpen (1968), J. Physiol., 194:407.PubMedGoogle Scholar
  50. Hubbard, J. I., S. F. Jones, and E. M. Landau (1968), J. Physiol., 194:355.PubMedGoogle Scholar
  51. Jirmanova, I., M. Sobotkova, S. Thesleff, and J. Zelena (1964), Physiol. Bohemoslov., 13:467.PubMedGoogle Scholar
  52. Josefsson, J. O. and S. Thesleff (1961), Acta Physiol. Scand., 51:163.PubMedCrossRefGoogle Scholar
  53. Katz, B. (1966), “Nerve, Muscle and Synapse,” McGraw-Hill, New York.Google Scholar
  54. Katz, B. and R. Miledi (1965), Proc. Royal Soc., 161:496.CrossRefGoogle Scholar
  55. Koelle, G. B. (1963), Cytologic distribution and physiologic functions of cholinesterases, in “Handbuch der Experimentellen Pharmakologie,” Chap. 6, Springer-Verlag, Berlin.Google Scholar
  56. Kupfer, C. (1958), Proc. Soc. Exp. Biol. Med., 99:474.PubMedGoogle Scholar
  57. Lewis, D. M. (1962), J. Physiol., 161:24P.Google Scholar
  58. Marchbanks, R. M. (1968), Biochem. J., 110:533.PubMedGoogle Scholar
  59. Michaelson, I. A. (1967), Ann. N.Y. Acad. Sci., 144:387.PubMedCrossRefGoogle Scholar
  60. Murray, P. D. F. (1926), Proc. Linnaean Soc., 51:187.Google Scholar
  61. Nastuk, W. (1966), Ann. N.Y. Acad. Sci., 135:110.PubMedCrossRefGoogle Scholar
  62. Rand, M. J. and B. C. Whalter (1965), Nature, 206:588.PubMedCrossRefGoogle Scholar
  63. Romanes, G. J. (1946), J. Anat., 80:117.Google Scholar
  64. Romanul, F. C. A. (1964), Arch. Neurol., 11:355.PubMedCrossRefGoogle Scholar
  65. Romanul, F. C. A. and E. L. Hogan (1964), Arch. Neurol., 13:263.CrossRefGoogle Scholar
  66. Romanul, F. C. A. and J. P. Van Der Meulen (1966), Nature, 212(5068):1369.PubMedCrossRefGoogle Scholar
  67. Rose, S. and P. H. Glow (1967), Exp. Neurol., 18:267.PubMedCrossRefGoogle Scholar
  68. Salmons, S. and G. Vrbova (1969), J. Physiol., 201:535.PubMedGoogle Scholar
  69. Simpson, L. L. (1968), J. Neurochem., 15:359.PubMedCrossRefGoogle Scholar
  70. Simpson, L. L. and H. Morimoto (1969), J. Bact., 97:571.PubMedGoogle Scholar
  71. Solandt, D. Y., R. C. Parridge, and J. Hunter (1943), J. Neurophysiol., 6:17.Google Scholar
  72. Sonesson, B. and A. Thesleff (1968), Life Sciences, 7:411.PubMedCrossRefGoogle Scholar
  73. Stevenson, J. W. and G. T. Girvin (1953), Atti VI Congr. Int. Microbiol., 4:133.Google Scholar
  74. Stewart, D. M. and A. W. Martin (1966), Exp. Neurol., 16:299.PubMedCrossRefGoogle Scholar
  75. Stromblad, B. C. R. (1960), Experientia, 26:458.CrossRefGoogle Scholar
  76. Takeuchi, A. and N. Takeuchi (1960), J. Physiol. (London), 144:52.Google Scholar
  77. Thesleff, S. (1960), J. Physiol. (London), 151:598.Google Scholar
  78. Tower, S. (1931a), Bull. Johns Hopkins Hosp., 48:115.Google Scholar
  79. Tower, S. (1931b), Brain, 54:99.CrossRefGoogle Scholar
  80. Tower, S. (1935), Amer. J. Anat., 56:1.CrossRefGoogle Scholar
  81. Tower, S. (1937), J. Comp. Neurol., 17:241.CrossRefGoogle Scholar
  82. Vincenzi, F. F. (1967), Nature, 213:394.PubMedCrossRefGoogle Scholar
  83. Watson, W. E. (1969), J. Physiol., 202:611.PubMedGoogle Scholar
  84. Westwood, D. A. and B. C. Whaler (1968), Brit. J. Pharmac. Chemother., 33:21.Google Scholar
  85. Whittaker, V. P. (1965), The application of subcellular fractionation techniques to the study of brain function, Chap. 2, in “Progress in Biophysics and Molecular Biology,” vol. 15, Pergamon Press, New York.Google Scholar
  86. Whittaker, V. P. (1968), Neurosciences Research Program Bulletin, MIT, 6:27.Google Scholar
  87. Zacks, S. I., M. V. Rhoades, and M. E. Sheff (1968), Exp. and Mol. Pathol., 9:77.CrossRefGoogle Scholar
  88. Zacks, S. I., J. F. Metzger, C. W. Smith, and J. M. Blumberg (1962), J. Neuropath. Exp. Neurol., 21:610.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Daniel B. Drachman
    • 1
  1. 1.Department of NeurologyThe Johns Hopkins University, School of Medicine and HospitalBaltimoreUSA

Personalised recommendations