Neuropoisons pp 263-281 | Cite as

Tetanus Toxin as a Neuropharmacological Tool

  • D. R. Curtis


The importance of the toxin of Clostridium tetani as a pharmacological tool is related to the suppression of certain types of central inhibition in vertebrates by both this toxin and strychnine. Although the actions of these substances on inhibitory synaptic transmission are not identical, both appear to affect the same type of synapse, which occurs predominantly in the spinal cord and which for convenience has been classified as “strychnine-sensitive.”


Botulinum Toxin Inhibitory Synapse Presynaptic Inhibition Tetanus Toxin Synaptic Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambache, N. (1949), J. Physiol. Lond., 108:127.Google Scholar
  2. Ambache, N., R. S. Morgan, and G. Payling Wright (1948a), J. Physiol. Lond., 107:45.PubMedGoogle Scholar
  3. Ambache, N., R. S. Morgan, and G. Payling Wright (1948b), Brit. J. Exp. Pathol., 29:408.Google Scholar
  4. Baker, A. B. (1942), J. Neuropathol., 1:394.CrossRefGoogle Scholar
  5. Bradley, K., D. M. Easton, and J. C. Eccles (1953), J. Physiol. Lond., 122:474.PubMedGoogle Scholar
  6. Brooks, V. B. (1956), J. Physiol. Lond., 134:264.PubMedGoogle Scholar
  7. Brooks, V. B. and H. Asanuma (1962), Science (New York), 137:674.CrossRefGoogle Scholar
  8. Brooks, V. B. and H. Asanuma (1965), Amer. J. Physiol., 208:674.PubMedGoogle Scholar
  9. Brooks, V. B., D. R. Curtis, and J. C. Eccles (1957), J. Physiol. London, 135:655.PubMedGoogle Scholar
  10. Bruggencate, G. Ten and I. Engberg (1969), Brain Res., 14:533.PubMedCrossRefGoogle Scholar
  11. Carrea, R. and A. Lanari (1962), Science (New York), 137:342.CrossRefGoogle Scholar
  12. Courtois-Suffit, M. and R. Giroux (1918), “The abnormal forms of tetanus,” University Press Ltd., London.Google Scholar
  13. Crawford, J. M., D. R. Curtis, P. E. Voorhoeve, and V. J. Wilson (1963), Nature (London), 200:845.CrossRefGoogle Scholar
  14. Curtis, D. R. (1959), J. Physiol. London, 145:175.PubMedGoogle Scholar
  15. Curtis, D. R. (1963), Pharmacol. Rev., 15:333.PubMedGoogle Scholar
  16. Curtis, D. R. (1964), Microelectrophoresis, in “Physical Techniques in Biological Research,” vol. 5 (W. L. Nastuk, ed.), Academic Press, New York, pp. 144–190.Google Scholar
  17. Curtis, D. R. (1968), Pharmacology and neurochemistry of mammalian central inhibitory processes, in “Structure and function of inhibitory mechanisms” (C. von Euler, S. Skoglund, and U. Söderberg, eds.), Pergamon Press, Oxford, pp. 429–456.Google Scholar
  18. Curtis, D. R. (1969), Prog. Brain Res., 31:171.CrossRefGoogle Scholar
  19. Curtis, D. R. and J. M. Crawford (1969), Ann. Rev. Pharmacol., 9:209.PubMedCrossRefGoogle Scholar
  20. Curtis, D. R. and W. C. de Groat (1968), Brain Res., 10:208.PubMedCrossRefGoogle Scholar
  21. Curtis, D. R., L. Hösli, and G. A. R. Johnston (1968a), Exp. Brain Res., 6:1.PubMedCrossRefGoogle Scholar
  22. Curtis, D. R., L. Hösli, G. A. R. Johnston, and I. H. Johnston (1968b), Exp. Brain Res., 5:235.PubMedCrossRefGoogle Scholar
  23. Davidoff, R. A., L. T. Graham, Jr., R. P. Shank, R. Werman, and M. H. Aprison (1967), J. Neurochem., 14:1025.PubMedCrossRefGoogle Scholar
  24. Dawson, D. J. and C. M. Mauritzen (1967), Aust. J. Biol. Sci., 20:253.PubMedGoogle Scholar
  25. Dawson, D. J. and L. W. Nichol (1969), Aust. J. Biol. Sci., 22:247.PubMedGoogle Scholar
  26. Eccles, J. C. (1966), Ann. N.Y. Acad. Sci., 137:473.PubMedCrossRefGoogle Scholar
  27. Eccles, J. C. (1968), Postsynaptic inhibition in the central nervous system, in “Structure and Function of Inhibitory Neuronal Mechanisms” (C. von Euler, S. Skoglund, and U. Söderberg, eds.), Pergamon Press, Oxford, pp. 291–308.Google Scholar
  28. Eide, E., I. Jurna, and A. Lundberg (1968), Conductance measurements from motoneurons during presynaptic inhibition, in “Structure and Functions of Inhibitory Neuronal Mechanisms” (C. von Euler, S. Skoglund and U. Söderberg, eds.), Pergamon Press, Oxford, pp. 215–219.Google Scholar
  29. Erzina, G. A. (1961), Sechenov. J. Physiol., 47:1062.Google Scholar
  30. Feigen, G. A., N. S. Peterson, W. W. Hofmann, G. H. Genther, and W. E. van Heyningen (1963), J. Gen. Microbiol, 33:489.PubMedGoogle Scholar
  31. Firor, W. M. and A. F. Jonas, Jr. (1938), Bull. Johns Hopkins Hosp., 62:90.Google Scholar
  32. Fletcher, W. M. (1903), Brain, 26:383.CrossRefGoogle Scholar
  33. Geinismann, Y. Y., M. V. Dyakonova, and G. N. Kryzhanovsky (1967), Bull. Exp. Biol. Med. (USSR), 11:71.Google Scholar
  34. Gushchin, I. S., S. N. Kozhechkin, and Y. S. Sverdlov (1969), Doklady Akad. Nauk (U.S.S.R.), 187, No. 3:685.Google Scholar
  35. Hughes, R. and B. C. Whaler (1962), J. Physiol. London, 160:221.PubMedGoogle Scholar
  36. Johnston, G. A. R., W. C. de Groat, and D. R. Curtis (1969), J. Neurochem., 16:797.PubMedCrossRefGoogle Scholar
  37. Kaeser, H. E., H. E. Müller, and B. Friedrich (1968), Europ. Neurol., 1:17.PubMedCrossRefGoogle Scholar
  38. Kaeser, H. E. and A. Saner (1969), Nature (London), 223:842.CrossRefGoogle Scholar
  39. Kano, M. and K. Takano (1969), Jap. J. Physiol., 19:1.CrossRefGoogle Scholar
  40. Kelly, J. S. and K. Krnjevic (1968), Nature (London), 219:1380.CrossRefGoogle Scholar
  41. Keynes, R. D. (1964), Microinjection, in “Physical Techniques in Biological Research,” vol. 5 (W. L. Nastuk, ed.), Academic Press, New York, pp. 183–190.Google Scholar
  42. Krnjevic, K., M. Randic, and D. W. Straughan (1966), J. Physiol. London, 184:78.PubMedGoogle Scholar
  43. Kryzhanovsky, G. N. and A. Kh. Kasymov (1964), Bull. Exp. Biol. Med. (USSR), 58: 1199.Google Scholar
  44. Kryzhanovsky, G. N. and V. K. Lutsenko (1969), Bull Exp. Biol. Med. (USSR), 2:15.Google Scholar
  45. Kryzhanovsky, G. N. and F. D. Sheikhon (1968), Bull. Exp. Biol., 9, No. 11:9.Google Scholar
  46. Kuno, M. (1957), Jap. J. Physiol., 7:42.CrossRefGoogle Scholar
  47. Lamanna, C. and C. J. Carr (1967), Clin. Pharmac. Ther., 8:286.Google Scholar
  48. Largier, J. F. (1956), J. Immunol, 76:393.PubMedGoogle Scholar
  49. Laurence, D. R. and R. A. Webster (1963), Clin. Pharmac. Ther., 4:36.Google Scholar
  50. Liddell, E. G. T. and C. S. Sherrington (1925), Proc. Roy. Soc. B, 97:267.CrossRefGoogle Scholar
  51. Lundberg, A. (1967), Electroen. Neurophysiol Suppl., 25:35.Google Scholar
  52. Mackereth, M. B. and D. J. Scott (1954), Proc. Univ. Otago Med. Sch., 32:13.Google Scholar
  53. Mangalo, R., B. Bizzini, A. Turpin, and M. Raynaud (1968), Biochim. Biophys. Acta, 168:583.PubMedGoogle Scholar
  54. Mellanby, J., D. Pope, and N. Ambache (1968), J. Gen. Microbiol, 50:479.PubMedGoogle Scholar
  55. Mellanby, J., W. E. van Heyningen, and V. P. Whittaker (1965), J. Neurochem., 12:77.PubMedCrossRefGoogle Scholar
  56. Mellanby, J. and V. P. Whittaker (1968), J. Neurochem., 15:205.PubMedCrossRefGoogle Scholar
  57. Meyer, H. and F. Ransom (1903), Arch. Exp. Pathol Pharmak., 49:367.CrossRefGoogle Scholar
  58. Muchnik, S. and E. H. Rubinstein (1967), Acta Physiol. Latin Amer., 17:166.Google Scholar
  59. Nicolaiër, A. (1884), Deut. Med. Wohnschr., 10:842.CrossRefGoogle Scholar
  60. Obata, K., M. Ito, R. Ochi, and N. Sato (1967), Exp. Brain Res., 4:43.PubMedCrossRefGoogle Scholar
  61. Payling Wright, G. (1955), Pharmacol. Rev., 7:413.Google Scholar
  62. Pillemer, L. (1946), J. Immunol, 53:237.PubMedGoogle Scholar
  63. Pillemer, L. and K. C. Robbins (1949), Ann. Rev. Microbiol, 3:265.CrossRefGoogle Scholar
  64. Pillemer, L. and W. B. Wartman (1947), J. Immunol, 55:277.PubMedGoogle Scholar
  65. Pillemer, L., R. G. Wittler, J. I. Burrell, and D. B. Grossberg (1948), J. Exp. Med., 88:205.PubMedCrossRefGoogle Scholar
  66. Prabhu, V. G., Y. T. Oester, and A. G. Karczmar (1962), Int. J. Neuropharmacol., 1:371.CrossRefGoogle Scholar
  67. Quastel, D. M. J. and D. R. Curtis (1965), Nature (London), 208:192.CrossRefGoogle Scholar
  68. Romanes, G. J. (1951), J. Comp. Neurol., 94:313.PubMedCrossRefGoogle Scholar
  69. Rowson, K. E. K. (1961), J. Gen. Microbiol., 25:315.PubMedGoogle Scholar
  70. Semba, T. and M. Kano (1969), Science (New York), 164:571.CrossRefGoogle Scholar
  71. Simpson, J. Y. (1854), Month. J. Med. Sci., 18:97.Google Scholar
  72. Sherrington, C. S. (1905), Proc. Roy. Soc. B, 76:269.CrossRefGoogle Scholar
  73. Smith, T. G., R. B. Wuerker, and K. Frank (1967), J. Neurophysiol, 30:1072.PubMedGoogle Scholar
  74. Stevenson, J. W. (1962), Bacterial neurotoxins, in “Neurochemistry” (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), Charles C. Thomas, Springfield, pp. 813–839.Google Scholar
  75. Sverdlov, Yu. S. and V. I. Alekseeva (1966), Fed. Proc., 25:T931.Google Scholar
  76. Thesleff, S. (1960), J. Physiol. (London), 151:598.Google Scholar
  77. Uchizono, K. (1966), Jap. J. Physiol., 16:570.CrossRefGoogle Scholar
  78. van Heyningen, W. E. (1950), “Bacterial Toxins,” Blackwell Scientific Publications, Oxford.Google Scholar
  79. van Heyningen, W. E. (1968), Sci. Amer., 218, No. 4:69.PubMedCrossRefGoogle Scholar
  80. van Heyningen, W. E. and J. Mellanby (1968), J. Gen. Microbiol, 52:447.Google Scholar
  81. van Heyningen, W. E. and P. M. Miller (1961), J. Gen. Microbiol, 24:107.Google Scholar
  82. Webster, R. A. (1967), Int. J. Neuropharmacol., 6:207.CrossRefGoogle Scholar
  83. Wilson, V. J., F. P. J. Diecke, and W. H. Talbot (1960), J. Neurophysiol, 23:659.PubMedGoogle Scholar
  84. Wilson, V. J., W. H. Talbot, and M. Kato (1964), J. Neurophysiol., 27:1063.PubMedGoogle Scholar
  85. Wright, E. A., R. S. Morgan, and G. Payling Wright (1950), J. Path. Bact., 62:569.PubMedCrossRefGoogle Scholar
  86. Yates, J. C. and R. D. Yates (1966), J. Ultrastruc. Res., 16:382.CrossRefGoogle Scholar
  87. Zacks, S. I. and S. I. Sheff (1966), J. Neuropath. Exp. Neurol., 25:422.PubMedCrossRefGoogle Scholar
  88. Zacks, S. I. and M. F. Sheff (1968), Science (New York), 159:643.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • D. R. Curtis
    • 1
  1. 1.Department of PhysiologyAustralian National UniversityCanberraAustralia

Personalised recommendations