The Silicon-Diode-Array Camera Tube

  • Merton H. Crowell
  • Edward F. Labuda
Part of the Optical Physics and Engineering book series (OPEG)


A large number of electronic cameras have been developed for converting an optical image into an electrical signal.1–3 In many of these, a light-induced charge pattern is stored on a suitable image-sensing target and a low-velocity scanning electron beam is used to access the charge pattern. One such camera tube, the vidicon, has many desirable characteristics; it has found extensive commercial use partly because of small size and inexpensive construction.2 However, the vidicon does possess characteristics which, in many applications, can prove undesirable or even detrimental.


Dark Current Modulation Transfer Function Depletion Region Resistive Film Optical Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. K. Zworykin and J. A. Morton, Television, John Wiley and Sons, New York, 2nd ed. (1954).Google Scholar
  2. 2.
    P. K. Weimer, J. V. Forgue, and R. R. Goodrich, “The Vidicon Photoconductive Camera Tube,” RCA Rev. 12(1), 306–313 (1951).Google Scholar
  3. 3.
    E. F. de Haan, A. van der Drift, and P. P. M. Schampers, “The ‘Plumbicon’ a New Television Camera Tube,” Philips Technical Rev. 25(6, 7), 133–155 (1963–1964).Google Scholar
  4. 4.
    J. W. Horton, R. V. Mazza, and H. Dym, “The Scanistor — A Solid State Image Scanner,” Proc. IEEE 52(12), 1513–1528 (1961).CrossRefGoogle Scholar
  5. 5.
    P. K. Weimer, G. Sadasiy, H. Borkan, L. Meray-Horvath, Jr., and F. V. Schallcross, “A Thin-Film Solid-State Image Sensor,” 1966 Int. Solid State Circuits Conf., University of Pennsylvania, Digest of Technical Papers, pp. 122-123.Google Scholar
  6. 6.
    G. P. Weckler, “Storage-Mode Operation of Phototransistor and Its Adaption to Integrated Arrays for Image Detection,” 1966 Int. Electron Device Meeting, Washington, D. C., October 26–28, 1966, p. 34.Google Scholar
  7. 7.
    M. A. Schuster and W. F. List, “Fabrication Considerations for Monolithic Electro-optical Mosaics,” Trans. Metallurgical Soc. AIME 236(3), 375–378 (1966).Google Scholar
  8. 8.
    Papers in “Special Issue on Solid State Imaging,” IEEE Trans, on Electron Devices ED-15 (4) (1968).Google Scholar
  9. 9.
    F. W. Reynolds, “Solid State Light Sensitive Storage Device,” U. S. Patent No. 3, 011, 089, applied for April 15, 1958, issued November 21, 1961.Google Scholar
  10. 10.
    M. H. Crowell, T. M. Buck, E. F. Labuda, J. V. Dalton, and E. J. Walsh, “An Electron Beam-Accessed, Image-Sensing Silicon-Diode Array with Visible Response,” 1967 Int. Solid State Circuits Conf., Digest of Technical Papers, University of Pen-sylvania, March 1967, pp. 128-130.Google Scholar
  11. 11.
    M. H. Crowell, T. M. Buck, E. F. Labuda, J. V. Dalton, and E. J. Walsh, “A Camera Tube with a Silicon Diode Array Target,” Bell Syst. Tech. J. 46(2), 491–495 (1967).CrossRefGoogle Scholar
  12. 12.
    P. H. Wendland, “A Charge-Storage Diode Vidicon Camera Tube,” IEEE Trans, on Electron Devices ED-14(9), 285–291 (1967).CrossRefGoogle Scholar
  13. 13.
    T. M. Buck, H. C. Casey, Jr., J. V. Dalton, and M. Yamin, “Influence of Bulk and Surface Properties on Image Sensing Silicon Diode Arrays,” Bell Syst. Tech. J. 47(9), 1827–1854 (1968).CrossRefGoogle Scholar
  14. 14.
    A. N. Chester, T. C. Loomis, M. M. Weiss, “Diode Array Camera Tubes and X-Ray Imaging,” Bell Syst. Tech. J. 48(2), 345–381 (1969).CrossRefGoogle Scholar
  15. 15.
    E. I. Gordon and M. H. Crowell, “A Charge Storage Target for Electron Imaging Sensing,” Bell Syst. Tech. J. 47(9), 1855–1873 (1968).CrossRefGoogle Scholar
  16. 16.
    W. C. Dash and R. Newman, “Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K,” Phys. Rev. 99(4), 1151–1155 (1955).CrossRefGoogle Scholar
  17. 17.
    W. Shockley, Electrons and Holes in Semiconductors, D. van Nostrand Company, New York (1950).Google Scholar
  18. 18.
    G. A. Morton and J. E. Ruedy, “The Low Light Level Performance of the Intensifier Orthicon,” in Photo-Electronic Image Devices, symposium at London, September 3–5, 1958, in Advances in Electronics and Electron Physics, Vol. XII, ed. by L. Marton, Academic Press, New York (1960), pp. 183–193.Google Scholar
  19. 19.
    A. S. Grove and D. J. Fitzgerald, “Surface Effects on p-n Junctions: Characteristics of Surface Space-Charge Regions under Non-Equilibrium Conditions,” Solid State Elec. 9(8), 783–806 (1966).CrossRefGoogle Scholar
  20. 20.
    J. A. M. Dikhoff, “Inhomogeneities in Doped Germanium and Silicon Crystals,” Philips Technical Rev. 22(8), 195–206, (1963–1964).Google Scholar
  21. 21.
    R. W. Redington, “The Transient Response of Photoconductive Camera Tubes Employing Low Velocity Sciannng,” IRE Trans, on Electron Devices ED-4(3), 220–225 (1957).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Merton H. Crowell
    • 1
  • Edward F. Labuda
    • 2
  1. 1.North American PhilipsBriarcliff ManorUSA
  2. 2.Bell Telephone LaboratoriesMurray HillUSA

Personalised recommendations