Noise Performance of the Channel Electron Multiplier

  • William M. Sackinger
Part of the Optical Physics and Engineering book series (OPEG, volume 1)


Many forms of photoelectronic devices employ a gain mechanism dependent upon multiplication of the energy of electrons forming the image, the number or flux density of electrons forming the image, or both.


Primary Energy Detection Efficiency Yield Curve Noise Figure Noise Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Häussler, “Untersuchungen zur Mehrfach-Emission von Sekundarelektronen,” Z. Physik 179, 276 (1964)CrossRefGoogle Scholar
  2. 2.
    H. M. Smith, J. E. Ruedy, and G. A. Morton, “Performance of a Photomultiplier with a Porous Transmission Dynode,” IEEE Trans. Nucl. Sci. NS13, 77 (June 1966).CrossRefGoogle Scholar
  3. 3.
    C. F. Barnett, private communication.Google Scholar
  4. 4.
    G. A. Morton, “Photomultipliers for Scintillation Counting,” RCA Review 1949 (December), 525–553.Google Scholar
  5. 5.
    F. J. Lombard and F. Martin, “Statistics of Electron Multiplication,” Rev. Sci. Inst. 32, 200 (1961).CrossRefGoogle Scholar
  6. 6.
    R. F. Tusting, Q. A. Kerns, and H. K. Kundsen, “Photomultiplier Single-Electron Statistics,” IRE Trans. Nucl. Sci. NS9 118 (1962).Google Scholar
  7. 7.
    N. S. Khlebnikov, A. Ye. Melamid, and T. A. Kovaleva, “Amplitude Distribution of Photomultiplier Output Current Pulses,” Radio Enq. Elect. Phys. 7, 488 (1962).Google Scholar
  8. 8.
    J. R. Prescott, “A Statistical Model for Photomultiplier Single-Electron Statistics,” Nucl. Inst. Methods39 173 (1966).CrossRefGoogle Scholar
  9. 9.
    A. M. Yakobson, “Evaluation of the Multiplication Factor of a Secondary Electron Multiplier (Multi-dyne) with a Continuous Dynode,” Radio Eng. Elect. Phys. 11 (10) (October 1966).Google Scholar
  10. 10.
    R. F. Goff and C. F. Hendee, “Studies of the Secondary Electron Emission Yield, Energy, and Angular Distribution from High Resistance Targets at Grazing Angles of Incidence,” 27th Annual Conf. on Physical Electronics, MIT, March 1967.Google Scholar
  11. 11.
    W. M. Sackinger, “Noise Performance of the Channel Electron Multiplier,” Ph.D. Thesis, Cornell University, June 1969.Google Scholar
  12. 12.
    G. W. Timm and A. van der Ziel, “Noise in Various Electron Multiplication Methods Used in Imaging Devices,” IEEE Trans. Electron Devices ED-15, 314 (May 1968).Google Scholar
  13. 13.
    J. R. Sharber, J. D. Winningham, and W. R. Sheldon, “A Directional, Low-Energy Electron Detector Employing Channel Electron Multipliers,” Southwest Center for Advanced Studies, Rept. DASS-68–1, March 1968.Google Scholar
  14. 14.
    L. A. Frank, “Low-Energy Proton and Electron Experiment for the Orbiting Geophysical Observations B and E, University of Iowa Report 65–22, The University of Iowa, July 1965.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • William M. Sackinger
    • 1
  1. 1.Corning Glass WorksCorningUSA

Personalised recommendations